中文版 | English
题名

Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble

作者
通讯作者Hong, Haoyuan
发表日期
2020
DOI
发表期刊
ISSN
18791026
EISSN
1879-1026
卷号718
摘要
The major target of this study is to design two novel hybrid integration artificial intelligent models, which are denoted as LADT-Bagging and FPA-Bagging, for modeling landslide susceptibility in the Youfanggou district (China). First of all, we prepared a geospatial database in the study area, including 79 landslide points that were divided into a training and validating dataset and 14 landslide conditioning factors. Second, the Support Vector Machines classifier (SVMC) approach was adapted to analyze the predictive capability of the landslide predisposing factors in each method. Then, a multicollinearity analysis using TOL and VIF parameters and Pearson's correlation coefficient methods were applied to verify the multicollinearity and correlation between these factors. Third, the LADT-Bagging and FPA-Bagging models were built by the integration of the LogitBoost alternating decision trees (LADT) with the Bagging ensemble and Forest by Penalizing Attributes (FPA) with the Bagging ensemble, respectively. Besides, heuristic tests were also applied to identify the appropriate values of each model's parameters in order to obtain the best programmer. Finally, for the training dataset, the results reveal that the LADT-Bagging model acquire the largest AUC value (0.980), smallest standard error (SE) (0.0134), narrowest 95% confidence interval (CI) (0.920–0.999), highest accuracy value (AV) (91.03%), highest specificity (94.44%), highest sensitivity (88.10%), highest F-measure (0.9115), lowest MAE (0.2016), lowest RMSE (0.2653), and highest Kappa (0.8205). About the result of validating dataset, it reveal that the LADT-Bagging model acquire the largest AUC value (0.781), the smallest SE (0.0539), the narrowest 95% CI (0.673–0.867), highest AV (71.19%), highest specificity (74.29%), highest sensitivity (69.77%), highest F-measure (0.7195), lowest MAE (0.3509), lowest RMSE (0.4335), and highest Kappa (0.4359). The results indicate that the LADT-Bagging model outperforms the FPA-Bagging, LADT and FPA models. Furthermore, the results of a Wilcoxon signed-rank test demonstrate that LADT-Bagging is significantly statistically different from other models. Therefore, in this study, the proposed new models are useful tools for land use planners or governments in high landslide risk areas.
© 2020 Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
China Scholarship Council[] ; National Natural Science Foundation of China[41871300] ; [201906860029]
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000526029000088
出版者
EI入藏号
20200808202683
EI主题词
Adaptive boosting ; Correlation methods ; Decision trees ; Heuristic programming ; Integration ; Land use ; Landslides ; Regression analysis ; Support vector machines
EI分类号
Urban and Regional Planning and Development:403 ; Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 ; Calculus:921.2 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
EV Compendex
引用统计
被引频次[WOS]:139
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104396
专题南方科技大学
人文社会科学学院_社会科学中心暨社会科学高等研究院
人文社会科学学院_人文科学中心
作者单位
1.Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing; 210023, China
2.State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing; 210023, China
3.Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing; Jiangsu; 210023, China
4.Department of Geography and Regional Research, University of Vienna, Vienna; 1010, Austria
5.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing; 100101, China
6.Department of Geography, University of Wisconsin-Madison, Madison; WI; 53706, United States
7.Center for Social Sciences, Southern University of Science and Technology, Shenzhen, Guangzhou; 518055, China
推荐引用方式
GB/T 7714
Hong, Haoyuan,Liu, Junzhi,Zhu, A-Xing. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble[J]. Science of the Total Environment,2020,718.
APA
Hong, Haoyuan,Liu, Junzhi,&Zhu, A-Xing.(2020).Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble.Science of the Total Environment,718.
MLA
Hong, Haoyuan,et al."Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble".Science of the Total Environment 718(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hong, Haoyuan]的文章
[Liu, Junzhi]的文章
[Zhu, A-Xing]的文章
百度学术
百度学术中相似的文章
[Hong, Haoyuan]的文章
[Liu, Junzhi]的文章
[Zhu, A-Xing]的文章
必应学术
必应学术中相似的文章
[Hong, Haoyuan]的文章
[Liu, Junzhi]的文章
[Zhu, A-Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。