题名 | Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor |
作者 | |
通讯作者 | Zeng, Yuan |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 0167-8655
|
EISSN | 1872-7344
|
卷号 | 133页码:158-164 |
摘要 | Ancient paintings are valuable culture legacy which can help archaeologists and culture researchers to study history and humanity. Most ancient artworks have damage problems, such as degradation, flaking and cracking. This work presents a novel controllable image inpainting framework with capability of incorporating suggestions from experts, which can help artists envisage how the ancient painting may have looked after a restoration. The framework leverages the content prediction power of deep convolutional neural network (CNN) and the nearest neighbor based pixel matching, where a deep CNN is designed to produce a coarse estimation of complete paintings by filling in missing regions and nearest neighbor based pixel matching is designed to map a mid-frequency estimation obtained from the deep CNN to high quality outputs in a controllable manner. In addition, we design a pixel descriptor using multi-scale neural features from different layers of a pre-trained deep network to capture different amounts of spatial context. Experimental results demonstrate that the proposed approach successfully predicts information in large missing regions and generates controllable high-frequency photo-realistic inpainting results. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | [JCYJ20170817110410346]
; [2019YFB1802800]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000537129300022
|
出版者 | |
EI入藏号 | 20201108288212
|
EI主题词 | Convolution
; Deep Neural Networks
; Frequency Estimation
; Historic Preservation
; Image Reconstruction
; Multilayer Neural Networks
; Pixels
; Restoration
|
EI分类号 | Information Theory And Signal Processing:716.1
|
ESI学科分类 | ENGINEERING
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:24
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104400 |
专题 | 前沿与交叉科学研究院 |
作者单位 | 1.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen; 518055, China 2.Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT, Southern University of Science and Technology (SUSTech), Shenzhen; 518055, China |
第一作者单位 | 前沿与交叉科学研究院 |
通讯作者单位 | 前沿与交叉科学研究院 |
第一作者的第一单位 | 前沿与交叉科学研究院 |
推荐引用方式 GB/T 7714 |
Zeng, Yuan,Gong, Yi,Zeng, Xiangrui. Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor[J]. PATTERN RECOGNITION LETTERS,2020,133:158-164.
|
APA |
Zeng, Yuan,Gong, Yi,&Zeng, Xiangrui.(2020).Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor.PATTERN RECOGNITION LETTERS,133,158-164.
|
MLA |
Zeng, Yuan,et al."Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor".PATTERN RECOGNITION LETTERS 133(2020):158-164.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Controllable digital(2313KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论