中文版 | English
题名

Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor

作者
通讯作者Zeng, Yuan
发表日期
2020
DOI
发表期刊
ISSN
0167-8655
EISSN
1872-7344
卷号133页码:158-164
摘要

Ancient paintings are valuable culture legacy which can help archaeologists and culture researchers to study history and humanity. Most ancient artworks have damage problems, such as degradation, flaking and cracking. This work presents a novel controllable image inpainting framework with capability of incorporating suggestions from experts, which can help artists envisage how the ancient painting may have looked after a restoration. The framework leverages the content prediction power of deep convolutional neural network (CNN) and the nearest neighbor based pixel matching, where a deep CNN is designed to produce a coarse estimation of complete paintings by filling in missing regions and nearest neighbor based pixel matching is designed to map a mid-frequency estimation obtained from the deep CNN to high quality outputs in a controllable manner. In addition, we design a pixel descriptor using multi-scale neural features from different layers of a pre-trained deep network to capture different amounts of spatial context. Experimental results demonstrate that the proposed approach successfully predicts information in large missing regions and generates controllable high-frequency photo-realistic inpainting results.
© 2020 Elsevier B.V.

关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一 ; 通讯
资助项目
[JCYJ20170817110410346] ; [2019YFB1802800]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000537129300022
出版者
EI入藏号
20201108288212
EI主题词
Convolution ; Deep Neural Networks ; Frequency Estimation ; Historic Preservation ; Image Reconstruction ; Multilayer Neural Networks ; Pixels ; Restoration
EI分类号
Information Theory And Signal Processing:716.1
ESI学科分类
ENGINEERING
来源库
EV Compendex
引用统计
被引频次[WOS]:24
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104400
专题前沿与交叉科学研究院
作者单位
1.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen; 518055, China
2.Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT, Southern University of Science and Technology (SUSTech), Shenzhen; 518055, China
第一作者单位前沿与交叉科学研究院
通讯作者单位前沿与交叉科学研究院
第一作者的第一单位前沿与交叉科学研究院
推荐引用方式
GB/T 7714
Zeng, Yuan,Gong, Yi,Zeng, Xiangrui. Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor[J]. PATTERN RECOGNITION LETTERS,2020,133:158-164.
APA
Zeng, Yuan,Gong, Yi,&Zeng, Xiangrui.(2020).Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor.PATTERN RECOGNITION LETTERS,133,158-164.
MLA
Zeng, Yuan,et al."Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor".PATTERN RECOGNITION LETTERS 133(2020):158-164.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Controllable digital(2313KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
[Zeng, Xiangrui]的文章
百度学术
百度学术中相似的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
[Zeng, Xiangrui]的文章
必应学术
必应学术中相似的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
[Zeng, Xiangrui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。