中文版 | English
题名

Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective

作者
通讯作者Li, Li
发表日期
2020
DOI
发表期刊
ISSN
14333058
卷号32期号:6页码:1789-1809
摘要

Due to the efficiency and efficacy in performance to tackle complex optimization problems, swarm intelligence (SI) optimizers, newly emerged as nature-inspired algorithms, have gained great interest from researchers over different fields. A large number of SI optimizers and their extensions have been developed, which drives the need to comprehensively review the characteristics of each algorithm. Hence, a generalized framework laid upon the fundamental principles from which SI optimizers are developed is crucial. This research takes a multidisciplinary view by exploring research motivations from biology, psychology, computing and engineering. A learning–interaction–diversification (LID) framework is proposed where learning is to understand the individual behavior, interaction is to describe the swarm behavior, and diversification is to control the population performance. With the LID framework, 22 state-of-the-art SI algorithms are characterized, and nine representative ones are selected to review in detail. To investigate the relationships between LID properties and algorithmic performance, LID-driven experiments using benchmark functions and real-world problems are conducted. Comparisons and discussions on learning behaviors, interaction relations and diversity control are given. Insights of the LID framework and challenges are also discussed for future research directions.
© 2018, The Natural Computing Applications Forum.

收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Shenzhen University[] ; [71431006] ; [71790615] ; Natural Science Foundation of Guangdong Province[2016A030310067] ; National Natural Science Foundation of China[71701079]
WOS记录号
WOS:000517095100023
出版者
EI入藏号
20183405717093
EI主题词
Benchmarking ; Biomimetics ; Evolutionary Algorithms ; Heuristic Algorithms ; Optimization
EI分类号
Biotechnology:461.8 ; Computer Programming:723.1 ; Optimization Techniques:921.5
来源库
EV Compendex
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104454
专题工学院_计算机科学与工程系
作者单位
1.College of Management, Shenzhen University, Shenzhen, China
2.Institute of Big Data Intelligent Management and Decision, Shenzhen University, Shenzhen, China
3.School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe; AZ; 85287, United States
4.School of Engineering and Management, Air Force Institute of Technology, Wright Patterson AFB; OH; 45433, United States
5.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Chu, Xianghua,Wu, Teresa,Weir, Jeffery D.,等. Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective[J]. Neural Computing and Applications,2020,32(6):1789-1809.
APA
Chu, Xianghua,Wu, Teresa,Weir, Jeffery D.,Shi, Yuhui,Niu, Ben,&Li, Li.(2020).Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective.Neural Computing and Applications,32(6),1789-1809.
MLA
Chu, Xianghua,et al."Learning–interaction–diversification framework for swarm intelligence optimizers: a unified perspective".Neural Computing and Applications 32.6(2020):1789-1809.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chu, Xianghua]的文章
[Wu, Teresa]的文章
[Weir, Jeffery D.]的文章
百度学术
百度学术中相似的文章
[Chu, Xianghua]的文章
[Wu, Teresa]的文章
[Weir, Jeffery D.]的文章
必应学术
必应学术中相似的文章
[Chu, Xianghua]的文章
[Wu, Teresa]的文章
[Weir, Jeffery D.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。