中文版 | English
题名

N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction

作者
通讯作者Zou, Liangliang; Li, Jun; Yang, Hui
发表日期
2020
DOI
发表期刊
ISSN
10902694
EISSN
1090-2694
卷号382页码:247-255
摘要

The availability of highly active and durable Pt based catalysts at a high metal loading is a prerequisite for practical applications in proton exchange membrane fuel cells (PEMFCs). Herein, we for the first time report the simple surfactant- and polymer-free synthesis of nonmetallic N doped Pt nanoparticles as electrocatalysts with an enhanced activity and excellent durability for oxygen reduction reaction (ORR) and such a synthetic procedure has been extended in a large-scale (>100 g/batch) for practical production already. X-ray diffraction and aberration-corrected transmission electron microscopy results clearly confirm that the doping of N within Pt lattice leads to the tensile strain in Pt nanoparticles. The tensile-strained Pt nanoparticles exhibit a negligible ORR activity decay by only 3.7% after a 20,000-cycle accelerated durability test (ADT) between 0.6 and 1.1 V/RHE, which places it among the most durable Pt-based catalysts reported for the ORR. While eliminating the strain effect, the activity degradation of the ORR on the Pt nanoparticles increases to 18.1%, close to that of commercial Pt/C catalyst (27.9%). Importantly, the tensile strain of N doped Pt nanoparticles is still remained after the ADT, assessing the structural stability of N-doped Pt nanoparticles. Theoretical calculations reveal that the N-doped Pt nanoparticles are chemically more stable than pristine ones due to Pt-N bonding effect, thus explaining well its excellent durability during the ORR. PEMFC integrated with as-prepared catalyst delivers a cell voltage of 0.65 V at the current density of 1.4 A·cm−2, satisfying the needs for vehicle use. The simple surfactant- and polymer-free approach presented here can be readily applied to other nonmetal doped Pt nanostructures and provides a promising potential for the practical applications in PEMFCs.
© 2019 Elsevier Inc.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Chinese Academy of Sciences[2017354] ; Youth Innovation Promotion Association[] ; European Synchrotron Radiation Facility[] ; Jiangxi Provincial Department of Science and Technology[GJJ181098] ; Development and Reform Commission of Shenzhen Municipality[] ; National Key Basic Research Program For Youth[2017YFA0206500] ; National Natural Science Foundation of China[21802065]
WOS研究方向
Chemistry ; Engineering
WOS类目
Chemistry, Physical ; Engineering, Chemical
WOS记录号
WOS:000518874000026
出版者
EI入藏号
20200207998780
EI主题词
Doping (Additives) ; Durability ; Electrocatalysts ; Electrolytic Reduction ; High Resolution Transmission Electron Microscopy ; Metal Nanoparticles ; Oxygen ; Platinum ; Platinum Compounds ; Proton Exchange Membrane Fuel Cells (Pemfc) ; Stability ; Surface Active Agents ; Synthesis (Chemical) ; Tensile Strain
EI分类号
Precious Metals:547.1 ; Fuel Cells:702.2 ; Optical Devices And Systems:741.3 ; Nanotechnology:761 ; Chemical Reactions:802.2 ; Chemical Agents And Basic Industrial Chemicals:803 ; Chemical Products Generally:804 ; Mechanics:931.1
ESI学科分类
CHEMISTRY
来源库
EV Compendex
引用统计
被引频次[WOS]:73
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104479
专题南方科技大学
工学院_材料科学与工程系
作者单位
1.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai; 201210, China
2.Engineering & Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang; 337055, China
3.Ningbo Cotrun New Energy S&T Co., Ltd., Ningbo; 315300, China
4.Southern University of Science and Technology, Shenzhen; 518055, China
5.College of Energy, Beijing University of Chemical Technology, Beijing; 100029, China
6.Department of Materials Science and Engineering, Department of Chemistry, University of North Texas, Denton; TX; 76203, United States
7.School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen; 518000, China
推荐引用方式
GB/T 7714
Xiong, Yunjie,Ma, Yunan,Zou, Liangliang,et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction[J]. Journal of Catalysis,2020,382:247-255.
APA
Xiong, Yunjie.,Ma, Yunan.,Zou, Liangliang.,Han, Shaobo.,Chen, Hong.,...&Yang, Hui.(2020).N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction.Journal of Catalysis,382,247-255.
MLA
Xiong, Yunjie,et al."N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction".Journal of Catalysis 382(2020):247-255.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S002195171930(2168KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiong, Yunjie]的文章
[Ma, Yunan]的文章
[Zou, Liangliang]的文章
百度学术
百度学术中相似的文章
[Xiong, Yunjie]的文章
[Ma, Yunan]的文章
[Zou, Liangliang]的文章
必应学术
必应学术中相似的文章
[Xiong, Yunjie]的文章
[Ma, Yunan]的文章
[Zou, Liangliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。