题名 | Quantum algorithm for solving linear differential equations: Theory and experiment |
作者 | |
通讯作者 | Lu, Dawei; Long, Guilu |
发表日期 | 2020-03-06
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 101期号:3 |
摘要 | Solving linear differential equations (LDEs) is a hard problem for classical computers, while quantum algorithms have been proposed to be capable of speeding up the calculation. However, they are yet to be realized in experiment as it cannot be easily converted into an implementable quantum circuit. Here, we present and experimentally realize an implementable gate-based quantum algorithm for efficiently solving the LDE problem: given an N x N matrix M, an N-dimensional vector b, and an initial vector x(0), we obtain a target vector x(t ) as a function of time t according to the constraint dx(t)Idt = Mx(t) + b. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances, and a gate-based quantum circuit is produced which is friendly to the experimentalists and implementable in current quantum techniques. In addition, we experimentally solve a 4 x 4 linear differential equation using our quantum algorithm in a four-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | project OpenSuperQ of the EU Flagship on Quantum Technologies[820363]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000518434700002
|
出版者 | |
EI入藏号 | 20201508393409
|
EI主题词 | Qubits
; Differential equations
|
EI分类号 | Light, Optics and Optical Devices:741
; Light/Optics:741.1
; Nanotechnology:761
; Calculus:921.2
; Quantum Theory; Quantum Mechanics:931.4
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:57
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104549 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China 2.Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China 3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 5.Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China 6.Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China 7.Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain 8.Univ Seville, Dept Fis Atom Mol & Nucl, Seville 41080, Spain 9.Basque Fdn Sci, IKERBASQUE, Maria Diaz de Haro 3, Bilbao 48013, Spain 10.Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China 11.Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China 12.Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China 13.Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China |
第一作者单位 | 量子科学与工程研究院; 物理系 |
通讯作者单位 | 量子科学与工程研究院; 物理系 |
推荐引用方式 GB/T 7714 |
Xin, Tao,Wei, Shijie,Cui, Jianlian,et al. Quantum algorithm for solving linear differential equations: Theory and experiment[J]. PHYSICAL REVIEW A,2020,101(3).
|
APA |
Xin, Tao.,Wei, Shijie.,Cui, Jianlian.,Xiao, Junxiang.,Arrazola, Inigo.,...&Long, Guilu.(2020).Quantum algorithm for solving linear differential equations: Theory and experiment.PHYSICAL REVIEW A,101(3).
|
MLA |
Xin, Tao,et al."Quantum algorithm for solving linear differential equations: Theory and experiment".PHYSICAL REVIEW A 101.3(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论