中文版 | English
题名

Adaptive hybrid threshold shrinkage using singular value decomposition

作者
通讯作者Fu, Shujun
发表日期
2019
DOI
发表期刊
ISSN
1560229X
EISSN
1560-229X
卷号28期号:6
摘要
We present a method for image denoising based on singular value shrinkage that fuses soft and hard thresholds. The technique simply groups similar patches from a noisy image as low-rank matrices and shrinks the singular values by the combination of soft and hard thresholds. On one hand, a hard threshold approximation method based on nonlocal self-similarity and low-rank approximation is used for fast selection of hard threshold; on the other hand, a soft threshold selection method based on random matrix and asymptotic matrix reconstruction theory is designed. In addition, we also propose an adaptive backward projection algorithm based on image phase congruency and gradient calculation so that the input images participating in the iteration are adaptive. This method improves the traditional fixed coefficient backward projection method and makes the robustness of the algorithm better. The experimental results of denoising and enhancement for a number of natural images show that the proposed algorithms have significant improvement in both subjective visual effect and objective quantization index by comparing with some related state-of-the-art denoising algorithms.
© 2019 SPIE and IS&T.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Shandong Province[ZR2019MF045] ; National Natural Science Foundation of China[11971269]
WOS研究方向
Engineering ; Optics ; Imaging Science & Photographic Technology
WOS类目
Engineering, Electrical & Electronic ; Optics ; Imaging Science & Photographic Technology
WOS记录号
WOS:000505570400002
出版者
EI入藏号
20200508096580
EI主题词
Approximation theory ; Image enhancement ; Iterative methods ; Shrinkage ; Singular value decomposition
EI分类号
Information Theory and Signal Processing:716.1 ; Mathematics:921 ; Numerical Methods:921.6 ; Materials Science:951
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104610
专题商学院_金融系
作者单位
1.Shenyang Aerospace University, School of Science, Shenyang, China
2.Harbin Institute of Technology, School of Mathematics, Harbin, China
3.Southern University of Science and Technology, Department of Finance, Shenzhen, China
4.Shandong University, School of Material Science and Engineering, Jinan, China
5.Shandong University, School of Mathematics, Jinan, China
6.Shandong University of Arts, College of Arts Management, Jinan, China
7.Second Hospital of Shandong University, Department of Intervention Medicine, Jinan, China
推荐引用方式
GB/T 7714
Zhai, Lin,Dong, Linjia,Liu, Yining,et al. Adaptive hybrid threshold shrinkage using singular value decomposition[J]. Journal of Electronic Imaging,2019,28(6).
APA
Zhai, Lin,Dong, Linjia,Liu, Yining,Fu, Shujun,Wang, Fengling,&Li, Yuliang.(2019).Adaptive hybrid threshold shrinkage using singular value decomposition.Journal of Electronic Imaging,28(6).
MLA
Zhai, Lin,et al."Adaptive hybrid threshold shrinkage using singular value decomposition".Journal of Electronic Imaging 28.6(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhai, Lin]的文章
[Dong, Linjia]的文章
[Liu, Yining]的文章
百度学术
百度学术中相似的文章
[Zhai, Lin]的文章
[Dong, Linjia]的文章
[Liu, Yining]的文章
必应学术
必应学术中相似的文章
[Zhai, Lin]的文章
[Dong, Linjia]的文章
[Liu, Yining]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。