题名 | Clonal selection based intelligent parameter inversion algorithm for prestack seismic data |
作者 | |
通讯作者 | Yan, Xuesong |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 0020-0255
|
EISSN | 1872-6291
|
卷号 | 517页码:86-99 |
摘要 | Amplitude variation with offset (AVO) elastic parameter inversion is an approach of oil exploration that employs seismic information, and it is a problem of non-linear optimization. When using a quasi-linear or linear approach to solve the problem, the inversion result is unreliable or inaccurate. Metaheuristic search methods, e.g., bio-inspired optimization algorithms such as genetic algorithms, are capable of handling highly non-linear optimization problems and thus provide a promising approach for oil and gas exploration. As one of the metaheuristic search approaches, the immune clone selection algorithm exhibits the property of fast convergence and strong global search capability. In this paper, the immune clone selection algorithm is used to address the problem of AVO elastic parameter inversion. This algorithm employs the specific initialization strategy of Aki as well as the approximation equation of Rechard, which is utilized in the elastic parameter inversion process to smooth the initialization parameter curve. Additionally, the genetic operation in the algorithm is improved in accordance. The results of multiple experiments demonstrate that the approach could significantly improve the inversion accuracy, and the correlation coefficient of the elastic parameters acquired via inversion is specifically high. © 2019 |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[]
; Fundamental Research Funds for the Central Universities[]
; National Natural Science Foundation of China[51825502]
; National Natural Science Foundation of China[61525304]
; National Natural Science Foundation of China[61672478]
; National Natural Science Foundation of China[61673354]
; National Natural Science Foundation of China[61873328]
; National Natural Science Foundation of China[U1911205]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000517659200006
|
出版者 | |
EI入藏号 | 20200207998282
|
EI主题词 | Approximation algorithms
; Biomimetics
; Cloning
; Elasticity
; Genetic algorithms
; Geological surveys
; Nonlinear programming
; Petroleum prospecting
; Seismic prospecting
; Seismic response
; Seismic waves
|
EI分类号 | Bioengineering and Biology:461
; Geology:481.1
; Geophysical Prospecting:481.4
; Seismology:484
; Petroleum Deposits : Development Operations:512.1.2
; Mathematics:921
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104658 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science, China University of Geosciences, Wuhan; Hubei; 430074, China 2.Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; Guangdong; 518055, China 3.State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan; Hubei; 430074, China 4.Department of Automation, Tsinghua University, Beijing; 100084, China |
推荐引用方式 GB/T 7714 |
Yan, Xuesong,Li, Pengpeng,Tang, Ke,et al. Clonal selection based intelligent parameter inversion algorithm for prestack seismic data[J]. INFORMATION SCIENCES,2020,517:86-99.
|
APA |
Yan, Xuesong,Li, Pengpeng,Tang, Ke,Gao, Liang,&Wang, Ling.(2020).Clonal selection based intelligent parameter inversion algorithm for prestack seismic data.INFORMATION SCIENCES,517,86-99.
|
MLA |
Yan, Xuesong,et al."Clonal selection based intelligent parameter inversion algorithm for prestack seismic data".INFORMATION SCIENCES 517(2020):86-99.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论