中文版 | English
题名

CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma

作者
通讯作者Gong, Jingshan
发表日期
2020-02-28
DOI
发表期刊
ISSN
0938-7994
EISSN
1432-1084
卷号30期号:7页码:4050-4057
摘要
Purpose Spread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma and is also a risk factor for recurrence and worse prognosis of lung adenocarcinoma. The aims of this study are to develop and validate a computed tomography (CT)-based radiomics model for preoperative prediction of STAS in lung adenocarcinoma. Methods and materials This retrospective study was approved by an institutional review board and included 462 (mean age, 58.06 years) patients with pathologically confirmed lung adenocarcinoma. STAS was identified in 90 patients (19.5%). Two experienced radiologists segmented and extracted radiomics features on preoperative thin-slice CT images with radiomics extension independently. Intraclass correlation coefficients (ICC) and Pearson's correlation were used to rule out those low reliable (ICC < 0.75) and redundant (r > 0.9) features. Univariate logistic regression was applied to select radiomics features which were associated with STAS. A radiomics-based machine learning predictive model using a random forest (RF) was developed and calibrated with fivefold cross-validation. The diagnostic performance of the model was measured by the area under the curve (AUC) of receiver operating characteristic (ROC). Results With univariate analysis, 12 radiomics features and age were found to be associated with STAS significantly. The RF model achieved an AUC of 0.754 (a sensitivity of 0.880 and a specificity of 0.588) for predicting STAS. Conclusion CT-based radiomics model can preoperatively predict STAS in lung adenocarcinoma with good diagnosis performance.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000517016300002
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:45
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104750
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Dept Radiol, Shenzhen Peoples Hosp, Clin Med Coll 2, Shenzhen 518020, Peoples R China
2.Jinan Univ, Dept Pathol, Shenzhen Peoples Hosp, Clin Med Coll 2, Shenzhen 518020, Peoples R China
3.Jinan Univ, Dept Thorac Surg, Shenzhen Peoples Hosp, Clin Med Coll 2, Shenzhen 518020, Peoples R China
4.Southern Univ Sci & Technol, Affiliated Hosp 1, Dept Radiol, Shenzhen 518020, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Jiang, Changsi,Luo, Yan,Yuan, Jialin,et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. EUROPEAN RADIOLOGY,2020,30(7):4050-4057.
APA
Jiang, Changsi.,Luo, Yan.,Yuan, Jialin.,You, Shuyuan.,Chen, Zhiqiang.,...&Gong, Jingshan.(2020).CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.EUROPEAN RADIOLOGY,30(7),4050-4057.
MLA
Jiang, Changsi,et al."CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma".EUROPEAN RADIOLOGY 30.7(2020):4050-4057.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Changsi]的文章
[Luo, Yan]的文章
[Yuan, Jialin]的文章
百度学术
百度学术中相似的文章
[Jiang, Changsi]的文章
[Luo, Yan]的文章
[Yuan, Jialin]的文章
必应学术
必应学术中相似的文章
[Jiang, Changsi]的文章
[Luo, Yan]的文章
[Yuan, Jialin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。