题名 | Content-Aware Cubemap Projection for Panoramic Image via Deep Q-Learning |
作者 | |
通讯作者 | Wang, Xu |
DOI | |
发表日期 | 2020
|
ISSN | 16113349
|
会议录名称 | |
卷号 | 11962 LNCS
|
页码 | 304-315
|
会议地点 | Daejeon, Korea, Republic of
|
出版者 | |
摘要 | Cubemap projection (CMP) becomes a potential panoramic data format for its efficiency. However, default CMP coordinate system with fixed viewpoint may cause distortion, especially around the boundaries of each projection plane. To promote quality of panoramic images in CMP, we propose a content-awared CMP optimization method via deep Q-learning. The key of this method is to predict an angle for rotating the image in Equirectangular projection (ERP), which attempts to keep foreground objects away from the edge of each projection plane after the image is re-projected with CMP. Firstly, the panoramic image in ERP is preprocessed for obtaining a foreground pixel map. Secondly, we feed the foreground map into the proposed deep convolutional network (ConvNet) to obtain the predicted rotation angle. The model parameters are training through the deep Q-learning scheme. Experimental results show our method keep more foreground pixels in center of each projection plane than the baseline. © 2020, Springer Nature Switzerland AG. |
学校署名 | 其他
|
收录类别 | |
资助项目 | [2016A030310058]
; [827000144]
; National Natural Science Foundation of China[61672443]
|
EI入藏号 | 20201108278295
|
EI主题词 | Learning systems
; Pixels
; Reinforcement learning
|
EI分类号 | Artificial Intelligence:723.4
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104844 |
专题 | 未来网络研究院 |
作者单位 | 1.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen; 510680, China 2.Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China 3.Peng Cheng Laboratory, PCL Research Center of Networks and Communications, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Chen, Zihao,Wang, Xu,Zhou, Yu,et al. Content-Aware Cubemap Projection for Panoramic Image via Deep Q-Learning[C]:Springer,2020:304-315.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论