中文版 | English
题名

Personalized recommendation using similarity powered pairwise amplifier network

作者
通讯作者Sun, Xiao
DOI
发表日期
2019
会议录名称
页码
138-146
会议地点
Sanya, China
出版者
摘要
Online advertising, one typical application of recommendation system, calls for effective and accurate recommendations of keywords. Extreme sparse and large scale data makes online advertising a challenging problem. To achieve better performance and accuracy of the recommendation, a better model with a short turnaround time is needed. In this paper, we address the problem of personalized online advertising for extreme sparse and large scale data. We develop a novel machine learning model (Similarity Powered Pairwise Amplifier Network, SPPAN for short). The complexity of this model (a.k.a. the number of parameters) grows with the amount of observed data, which makes it suitable to extremely sparse data. The training algorithm based on gradient descent makes it easy to parallelize. The similarity model combines the user neighborhood and item neighborhood ideas in collaborative filtering smartly, obtaining a cost-effective way to handle large scale data. The proposed framework is evaluated on a large set of real-world data set from a large internet company (expressed by "Company A"). The experiment results demonstrate that the proposed SPPAN model can greatly improve the prediction and recommendation accuracy on that extreme sparse data set compared with existing approaches.
© 2019 ACM.
学校署名
第一
收录类别
EI入藏号
20200908248326
EI主题词
Artificial intelligence ; Collaborative filtering ; Cost effectiveness ; Gradient methods ; Learning algorithms ; Neural networks
EI分类号
Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Industrial Economics:911.2 ; Marketing:911.4 ; Numerical Methods:921.6
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104849
专题工学院_机械与能源工程系
作者单位
1.Department of Mechanical and Energy Engineering, South University of Science and Technology, Shenzhen, China
2.National Engineering Laboratory for E-Commerce Technology, Tsinghua University, Beijing National Research Center for Information Science and Technology, Beijing, China
第一作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang, Tongda,Qian, Jun,Sun, Xiao,et al. Personalized recommendation using similarity powered pairwise amplifier network[C]:Association for Computing Machinery,2019:138-146.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Tongda]的文章
[Qian, Jun]的文章
[Sun, Xiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Tongda]的文章
[Qian, Jun]的文章
[Sun, Xiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Tongda]的文章
[Qian, Jun]的文章
[Sun, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。