题名 | DIDD: Identifying and Learning New Conceptual Data with Lower Diversity |
作者 | |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 2410-2417
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The distribution of data streams may change over time, which is called concept drift. Data stream mining algorithms need to detect and adapt to such changes quickly. This paper proposes a new online ensemble algorithm, Diversity and Identification for Dealing with Drifts(DIDD), to tackle the concept drift problem. During the process of concept drift, the data of two concepts exist simultaneously. DIDD uses a snapshot model to find new conceptual data and learn them with lower diversity. Experiments show that DIDD can adapt to new concept more quickly than other online ensemble methods. DIDD has achieved good results on various data sets with different types of concept drift. © 2019 IEEE. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | [2017ZT07X386]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467202070
|
EI入藏号 | 20201108276674
|
EI主题词 | Artificial intelligence
|
EI分类号 | Artificial Intelligence:723.4
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002968 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104853 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving, Intelligent Systems of Guangdong Province, Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Pan, Chao,Yao, Xin. DIDD: Identifying and Learning New Conceptual Data with Lower Diversity[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2410-2417.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论