中文版 | English
题名

Self-adaptive Decomposition and Incremental Hyperparameter Tuning Across Multiple Problems

作者
DOI
发表日期
2019
ISBN
978-1-7281-2486-5
会议录名称
页码
1590-1597
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The Capacitated Arc Routing Problem (CARP) is a NP-hard combinatorial optimisation problem with numerous real-world applications. Several divide-and-conquer approaches, controlled by one or more hyperparameters, have been proposed to tackle large-scale CARPs. The tuning of hyperparameters can be computationally expensive due to the lack of priori knowledge, the size of the configuration space, and the time required for solving a CARP instance. Motivated by this time consuming task, we propose a scalable approach based on self-adaptive hierarchical decomposition (SASAHiD) to scale up existing methods. We take a state-of-the-art decomposition method for large-scale CARPs called SAHiD as an example to carry out experiments on two sets of real-world CARP instances with hundreds to thousands of tasks. The results demonstrate that SASAHiD outperforms SAHiD significantly with fewer hyperparameters, thus the dimension of associated configuration space is reduced. Moreover, we propose an incremental hyperparameter tuning approach across multiple problem instances to learn the hyperparameters of SASAHiD on a set of instances with different sizes. SASAHiD with optimised hyperparameters achieves better or competitive results with the SASAHiD using default hyperparameters when solving problem instances that it has never seen in the training set.
© 2019 IEEE.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2017YFC0804003]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467201103
EI入藏号
20201108276672
EI主题词
Artificial intelligence ; Combinatorial optimization ; Network routing ; Wave functions
EI分类号
Artificial Intelligence:723.4 ; Mathematics:921 ; Optimization Techniques:921.5
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002966
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104854
专题南方科技大学
作者单位
Southern University of Science and Technology, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving, Intelligent Systems of Guangdong Province, Shenzhen; 518055, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Liu, Jialin,Yao, Xin. Self-adaptive Decomposition and Incremental Hyperparameter Tuning Across Multiple Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1590-1597.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。