题名 | Self-adaptive Decomposition and Incremental Hyperparameter Tuning Across Multiple Problems |
作者 | |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 1590-1597
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The Capacitated Arc Routing Problem (CARP) is a NP-hard combinatorial optimisation problem with numerous real-world applications. Several divide-and-conquer approaches, controlled by one or more hyperparameters, have been proposed to tackle large-scale CARPs. The tuning of hyperparameters can be computationally expensive due to the lack of priori knowledge, the size of the configuration space, and the time required for solving a CARP instance. Motivated by this time consuming task, we propose a scalable approach based on self-adaptive hierarchical decomposition (SASAHiD) to scale up existing methods. We take a state-of-the-art decomposition method for large-scale CARPs called SAHiD as an example to carry out experiments on two sets of real-world CARP instances with hundreds to thousands of tasks. The results demonstrate that SASAHiD outperforms SAHiD significantly with fewer hyperparameters, thus the dimension of associated configuration space is reduced. Moreover, we propose an incremental hyperparameter tuning approach across multiple problem instances to learn the hyperparameters of SASAHiD on a set of instances with different sizes. SASAHiD with optimised hyperparameters achieves better or competitive results with the SASAHiD using default hyperparameters when solving problem instances that it has never seen in the training set. © 2019 IEEE. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | [2017YFC0804003]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467201103
|
EI入藏号 | 20201108276672
|
EI主题词 | Artificial intelligence
; Combinatorial optimization
; Network routing
; Wave functions
|
EI分类号 | Artificial Intelligence:723.4
; Mathematics:921
; Optimization Techniques:921.5
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002966 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104854 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving, Intelligent Systems of Guangdong Province, Shenzhen; 518055, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Liu, Jialin,Yao, Xin. Self-adaptive Decomposition and Incremental Hyperparameter Tuning Across Multiple Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1590-1597.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论