题名 | Hierarchical Decomposition based Cooperative Coevolution for Large-Scale Black-Box Optimization |
作者 | |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 2690-2697
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Most state-of-the-art decomposition approaches for cooperative coevolution adopt a static graph (variable interaction matrix) viewpoint to recognize the possible separability of real-valued objective functions. Although generally they work well for partially additively separable scenarios, all of them cannot solve non-separable problems and non-additively separable problems effectively. To tackle these issues, based on our recent theoretical advance, this paper proposes a hierarchical-decomposition-based cooperative coevolutionary framework for large-scale black-box optimization (LSBBO). Specifically, the well-known cyclically random decomposition strategy is embedded in a hierarchical fashion, in order to facilitate the continuous evolution of the best-so-far solution. Such a hierarchy provides a flexible way to make a proper trade-off between computational complexity and search performance as well as exploration and exploitation. Numerical experiments on the IEEE CEC'2010 LSBBO test suite showed the complementary performance of the proposed framework (when integrated with the automatic decomposition technique). © 2019 IEEE. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangdong Innovative and Entrepreneurial Research Team Program[2017ZT07X386]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; National Natural Science Foundation of China[61761136008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467202109
|
EI入藏号 | 20201108276627
|
EI主题词 | Additives
; Artificial intelligence
; Economic and social effects
|
EI分类号 | Artificial Intelligence:723.4
; Chemical Agents and Basic Industrial Chemicals:803
; Optimization Techniques:921.5
; Social Sciences:971
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9003169 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104855 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology (SUSTech), Shenzhen Key Laboratory of Computational Intelligence, Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Duan, Qiqi,Qu, Liang,Shao, Chang,et al. Hierarchical Decomposition based Cooperative Coevolution for Large-Scale Black-Box Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2690-2697.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论