中文版 | English
题名

Hierarchical Decomposition based Cooperative Coevolution for Large-Scale Black-Box Optimization

作者
DOI
发表日期
2019
ISBN
978-1-7281-2486-5
会议录名称
页码
2690-2697
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Most state-of-the-art decomposition approaches for cooperative coevolution adopt a static graph (variable interaction matrix) viewpoint to recognize the possible separability of real-valued objective functions. Although generally they work well for partially additively separable scenarios, all of them cannot solve non-separable problems and non-additively separable problems effectively. To tackle these issues, based on our recent theoretical advance, this paper proposes a hierarchical-decomposition-based cooperative coevolutionary framework for large-scale black-box optimization (LSBBO). Specifically, the well-known cyclically random decomposition strategy is embedded in a hierarchical fashion, in order to facilitate the continuous evolution of the best-so-far solution. Such a hierarchy provides a flexible way to make a proper trade-off between computational complexity and search performance as well as exploration and exploitation. Numerical experiments on the IEEE CEC'2010 LSBBO test suite showed the complementary performance of the proposed framework (when integrated with the automatic decomposition technique).
© 2019 IEEE.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Innovative and Entrepreneurial Research Team Program[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; National Natural Science Foundation of China[61761136008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467202109
EI入藏号
20201108276627
EI主题词
Additives ; Artificial intelligence ; Economic and social effects
EI分类号
Artificial Intelligence:723.4 ; Chemical Agents and Basic Industrial Chemicals:803 ; Optimization Techniques:921.5 ; Social Sciences:971
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9003169
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104855
专题南方科技大学
作者单位
Southern University of Science and Technology (SUSTech), Shenzhen Key Laboratory of Computational Intelligence, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Duan, Qiqi,Qu, Liang,Shao, Chang,et al. Hierarchical Decomposition based Cooperative Coevolution for Large-Scale Black-Box Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2690-2697.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Duan, Qiqi]的文章
[Qu, Liang]的文章
[Shao, Chang]的文章
百度学术
百度学术中相似的文章
[Duan, Qiqi]的文章
[Qu, Liang]的文章
[Shao, Chang]的文章
必应学术
必应学术中相似的文章
[Duan, Qiqi]的文章
[Qu, Liang]的文章
[Shao, Chang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。