中文版 | English
题名

Learning Transferable Variation Operators in a Continuous Genetic Algorithm

作者
DOI
发表日期
2019
ISBN
978-1-7281-2486-5
会议录名称
页码
2027-2033
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The notion of experience has often been neglected within the domain of evolutionary computation while in machine learning a large variety of methods has emerged in the recent years under the umbrella of transfer learning. Notably, realizing experience-based methods suffers from a variety of conceptual key problems. The first one being in regards to what constitutes problem-similarity from an algorithm perspective and the second one being what constitutes the transferable experience by itself. Ideally, one would envision that a learning optimization algorithm could be expected to act similarly to a human-problem solver who tackles novel tasks initially without any preconceptions. Experience only comes into play until sufficient similarity to known problems is established. Our paper therefore has two aims. First, to outline existing related fields and methodologies and highlight their insufficiencies. Second, to make the case for experience-based optimization by a demonstration using a novel and statistics-based approach with a real-coded genetic algorithm as a case study. In this paper we do not claim to construct universal problem solvers, but instead propose that from an algorithm-specific-view, problem characteristics can be learned and harnessed to improve future performance of similarly-structured optimization tasks.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2017ZT07X386]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467202017
EI入藏号
20201108276682
EI主题词
Evolutionary algorithms ; Genetic algorithms ; Knowledge management ; Learning algorithms ; Learning systems
EI分类号
Computer Applications:723.5
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002976
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104856
专题南方科技大学
作者单位
1.University of Birmingham, School of Computer Science, United Kingdom
2.Honda Research Institute Europe GmbH, Offenbach A.M.; 63073, Germany
3.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Friess, Stephen,Tino, Peter,Menzel, Stefan,et al. Learning Transferable Variation Operators in a Continuous Genetic Algorithm[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2027-2033.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Friess, Stephen]的文章
[Tino, Peter]的文章
[Menzel, Stefan]的文章
百度学术
百度学术中相似的文章
[Friess, Stephen]的文章
[Tino, Peter]的文章
[Menzel, Stefan]的文章
必应学术
必应学术中相似的文章
[Friess, Stephen]的文章
[Tino, Peter]的文章
[Menzel, Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。