题名 | Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms |
作者 | |
DOI | |
发表日期 | 2019
|
会议名称 | 2019 IEEE Symposium Series on Computational Intelligence
|
ISBN | 978-1-7281-2486-5
|
会议录名称 | |
页码 | 1849-1856
|
会议日期 | 6-9 Dec. 2019
|
会议地点 | Xiamen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Evolutionary algorithms' performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm's parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm's parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm's performance and reduce its optimization risk as well as the algorithm's parametertuning time. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | [2017ZT07X386]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000555467201137
|
EI入藏号 | 20201108276696
|
EI主题词 | Artificial Intelligence
; Evolutionary Algorithms
; Knowledge Management
; Particle Swarm Optimization (Pso)
|
EI分类号 | Computer Software, Data HAndling And Applications:723
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9003101 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104859 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, University Key Laboratory of Evolving, Intelligent Systems of Guangdong Province, Shenzhen; 518055, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tong, Hao,Zhang, Shuyi,Huang, Changwu,et al. Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1849-1856.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Algorithm Portfolio (903KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论