中文版 | English
题名

Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms

作者
DOI
发表日期
2019
会议名称
2019 IEEE Symposium Series on Computational Intelligence
ISBN
978-1-7281-2486-5
会议录名称
页码
1849-1856
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Evolutionary algorithms' performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm's parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm's parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm's performance and reduce its optimization risk as well as the algorithm's parametertuning time.
© 2019 IEEE.

关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2017ZT07X386]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467201137
EI入藏号
20201108276696
EI主题词
Artificial Intelligence ; Evolutionary Algorithms ; Knowledge Management ; Particle Swarm Optimization (Pso)
EI分类号
Computer Software, Data HAndling And Applications:723
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9003101
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104859
专题南方科技大学
作者单位
Southern University of Science and Technology, University Key Laboratory of Evolving, Intelligent Systems of Guangdong Province, Shenzhen; 518055, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Tong, Hao,Zhang, Shuyi,Huang, Changwu,et al. Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1849-1856.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Algorithm Portfolio (903KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tong, Hao]的文章
[Zhang, Shuyi]的文章
[Huang, Changwu]的文章
百度学术
百度学术中相似的文章
[Tong, Hao]的文章
[Zhang, Shuyi]的文章
[Huang, Changwu]的文章
必应学术
必应学术中相似的文章
[Tong, Hao]的文章
[Zhang, Shuyi]的文章
[Huang, Changwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。