中文版 | English
题名

Optimal Evolutionary Optimization Hyper-parameters to Mimic Human User Behavior

作者
DOI
发表日期
2019
ISBN
978-1-7281-2486-5
会议录名称
页码
858-866
会议日期
6-9 Dec. 2019
会议地点
Xiamen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Shape morphing methods are a key representation in human user-centered design as well as computational optimization of engineering applications in the automotive domain.3D digital objects are modified using deformation algorithms to alter the shape for optimal product performance or design aesthetics. We imagine a system which can learn from historic user deformation sequences and support the user in present design tasks by predicting potential design variations based on currently observed design changes carried out by the user. Towards a practical realization, a large amount of human user deformation sequence data is required which is practically not available. To overcome this limitation, we propose to use a computational target shape matching optimization whose hyper-parameters are tuned to exemplary human user sequence data and that allows us to afterwards generate large data-sets of human-like shape modification data in an automated fashion. In addition, we classified the user sequences to experience levels based on their variance. These user experience-tuned evolutionary optimizers allow us in future to mimic different user behavior and generate a large number of potential design variations in an automated fashion.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
[766186]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467200121
EI入藏号
20201108276664
EI主题词
Artificial intelligence ; Deformation ; Product design ; Shape optimization ; User centered design ; User experience
EI分类号
Artificial Intelligence:723.4 ; Production Engineering:913.1 ; Optimization Techniques:921.5 ; Social Sciences:971
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9002958
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104862
专题工学院_计算机科学与工程系
作者单位
1.Honda Research Institute Europe GmbH, Offenbach; 63073, Germany
2.University of Birmingham, CERCIA, School of Computer Science, United Kingdom
3.Southern University of Science and Technology, Department of Computer Science and Engineering, Shenzhen, China
推荐引用方式
GB/T 7714
Saha, Sneha,Rios, Thiago,Minku, Leandro L.,et al. Optimal Evolutionary Optimization Hyper-parameters to Mimic Human User Behavior[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:858-866.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Saha, Sneha]的文章
[Rios, Thiago]的文章
[Minku, Leandro L.]的文章
百度学术
百度学术中相似的文章
[Saha, Sneha]的文章
[Rios, Thiago]的文章
[Minku, Leandro L.]的文章
必应学术
必应学术中相似的文章
[Saha, Sneha]的文章
[Rios, Thiago]的文章
[Minku, Leandro L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。