题名 | ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing |
作者 | |
DOI | |
发表日期 | 2019
|
ISSN | 2163-4025
|
EISSN | 1550-4840
|
ISBN | 978-1-5090-0618-2
|
会议录名称 | |
卷号 | 18
|
期号 | 2
|
页码 | 1-4
|
会议日期 | 17-19 Oct. 2019
|
会议地点 | Nara, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Pathology image segmentation is an essential step in early detection and diagnosis for various diseases. Due to its complex nature, precise segmentation is not a trivial task. Recently, deep learning has been proved as an effective option for pathology image processing. However, its efficiency is highly restricted by the inconsistent annotation quality. In this paper, we propose an accurate and noise-Tolerant segmentation approach to overcome the aforementioned issues, which consists of a pre-processing module for data augmentation, a new neural network architecture, ANT-UNet, and a FCCRF inference module. Experimental results demonstrate that, even on a noisy dataset, the proposed approach can achieve more accurate segmentation with 4-23% accuracy improvement than other commonly used segmentation methods. Moreover, the proposed architecture is hardware-friendly and can be incorporated with a GPU acceleration flow to reach 24-128× speed-up. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Zhejiang Provincial Innovation Team Project[2020R01001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Information Systems
; Engineering, Biomedical
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000521751500119
|
EI入藏号 | 20195307946583
|
EI主题词 | Data handling
; Deep learning
; Diagnosis
; Image segmentation
; Network architecture
; Pathology
|
EI分类号 | Medicine and Pharmacology:461.6
; Data Processing and Image Processing:723.2
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8919150 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104877 |
专题 | 南方科技大学 |
作者单位 | 1.Zhejiang University, Hangzhou; 310027, China 2.Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen, Guangdong; 518055, China |
推荐引用方式 GB/T 7714 |
Chen, Yufei,Zhang, Qinming,Li, Tingtao,et al. ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1-4.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论