中文版 | English
题名

ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing

作者
DOI
发表日期
2019
ISSN
2163-4025
EISSN
1550-4840
ISBN
978-1-5090-0618-2
会议录名称
卷号
18
期号
2
页码
1-4
会议日期
17-19 Oct. 2019
会议地点
Nara, Japan
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Pathology image segmentation is an essential step in early detection and diagnosis for various diseases. Due to its complex nature, precise segmentation is not a trivial task. Recently, deep learning has been proved as an effective option for pathology image processing. However, its efficiency is highly restricted by the inconsistent annotation quality. In this paper, we propose an accurate and noise-Tolerant segmentation approach to overcome the aforementioned issues, which consists of a pre-processing module for data augmentation, a new neural network architecture, ANT-UNet, and a FCCRF inference module. Experimental results demonstrate that, even on a noisy dataset, the proposed approach can achieve more accurate segmentation with 4-23% accuracy improvement than other commonly used segmentation methods. Moreover, the proposed architecture is hardware-friendly and can be incorporated with a GPU acceleration flow to reach 24-128× speed-up.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Zhejiang Provincial Innovation Team Project[2020R01001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Information Systems ; Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号
WOS:000521751500119
EI入藏号
20195307946583
EI主题词
Data handling ; Deep learning ; Diagnosis ; Image segmentation ; Network architecture ; Pathology
EI分类号
Medicine and Pharmacology:461.6 ; Data Processing and Image Processing:723.2
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8919150
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104877
专题南方科技大学
作者单位
1.Zhejiang University, Hangzhou; 310027, China
2.Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen, Guangdong; 518055, China
推荐引用方式
GB/T 7714
Chen, Yufei,Zhang, Qinming,Li, Tingtao,et al. ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1-4.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yufei]的文章
[Zhang, Qinming]的文章
[Li, Tingtao]的文章
百度学术
百度学术中相似的文章
[Chen, Yufei]的文章
[Zhang, Qinming]的文章
[Li, Tingtao]的文章
必应学术
必应学术中相似的文章
[Chen, Yufei]的文章
[Zhang, Qinming]的文章
[Li, Tingtao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。