题名 | Anterior Chamber Angles Classification in Anterior Segment OCT Images via Multi-Scale Regions Convolutional Neural Networks |
作者 | |
DOI | |
发表日期 | 2019
|
ISSN | 1557-170X
|
EISSN | 1558-4615
|
ISBN | 978-1-5386-1312-2
|
会议录名称 | |
页码 | 849-852
|
会议日期 | 23-27 July 2019
|
会议地点 | Berlin, Germany
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Angle-closure glaucoma is one of the major causes of blindness in Asia. In this paper, we present a new approach for the classification of the anterior chamber angles into open, narrowed, and closure, in anterior segment optical coherence tomography (AS-OCT), by learning the manual annotations from gonioscopy, so as to further assist the assessment of angle-closure glaucoma. The proposed framework firstly localizes the anterior chamber angle region automatically, which is the primary structural image cue for clinically identifying glaucoma. Then three scales of cropped chamber angle images are fed into our Multi-Scale Regions Convolutional Neural Networks (MSRCNN) architecture, in which three parallel convolutional neural networks are applied to extract feature representations. Finally, the representations are stacked to fully-connected layer for glaucoma type classification. The proposed method is evaluated across a dataset of 9728 anterior chamber angle images, and the experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Natural Science Foundation of Ningbo[2018A610055]
; Guangzhou Science and Technology Program key projects[201803010066]
; National Natural Science Foundation of China[61601029]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Biomedical
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000557295301065
|
EI入藏号 | 20200308034499
|
EI主题词 | Ophthalmology
; Optical tomography
; Image classification
; Image segmentation
; Convolutional neural networks
|
EI分类号 | Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Optical Devices and Systems:741.3
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8857615 |
引用统计 |
被引频次[WOS]:19
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104886 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China 2.Glaucoma Artificial Intelligence Diagnosis and Imaging Analysis Joint Research Lab, Guangzhou& Ningbo, China 3.Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China 4.Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates 5.Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China 6.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Hao, Huaying,Zhao, Yitian,Fu, Huazhu,et al. Anterior Chamber Angles Classification in Anterior Segment OCT Images via Multi-Scale Regions Convolutional Neural Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:849-852.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论