中文版 | English
题名

Conditional Adversarial Transfer for Glaucoma Diagnosis

作者
通讯作者Tan, Mingkui
DOI
发表日期
2019
ISSN
1557-170X
EISSN
1558-4615
ISBN
978-1-5386-1312-2
会议录名称
页码
2032-2035
会议日期
23-27 July 2019
会议地点
Berlin, Germany
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Deep learning has achieved great success in image classification task when given sufficient labeled training images. However, in fundus image based glaucoma diagnosis, we often have very limited training data due to expensive cost in data labeling. Moreover, when facing a new application environment, it is difficult to train a network with limited labeled training images. In this case, some images from some auxiliary domains (i.e., source domain) could be exploited to improve the performance. Unfortunately, direct using the source domain data may not achieve promising performance for the domain of interest (i.e., target domain) due to reasons like distribution discrepancy between two domains. In this paper, focusing on glaucoma diagnosis, we propose a deep adversarial transfer learning method conditioned on label information to match the distributions of source and target domains, so that the labeled source images can be leveraged to improve the classification performance in the target domain. Different from the most existing adversarial transfer learning methods which consider marginal distribution matching only, we seek to match the label conditional distributions by handling images with different labels separately. We conduct experiments on three glaucoma datasets and adopt multiple evaluation metrics to verify the effectiveness of our proposed method.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61602185]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号
WOS:000557295302105
EI入藏号
20200308035711
EI主题词
Ophthalmology ; Computer aided diagnosis ; Learning systems ; Classification (of information) ; Deep learning ; Computer vision
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Vision:741.2 ; Information Sources and Analysis:903.1
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8857308
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104889
专题南方科技大学
作者单位
1.South China University of Technology, China
2.Baidu, Inc., China
3.Southern University of Science and Technology, Chinese Academy of Sciences, China
4.CVTE Research, China
5.Medical Image and Signal Processing Group, CVTE Research
推荐引用方式
GB/T 7714
Wang, Jingwen,Yan, Yuguang,Xu, Yanwu,et al. Conditional Adversarial Transfer for Glaucoma Diagnosis[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2032-2035.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jingwen]的文章
[Yan, Yuguang]的文章
[Xu, Yanwu]的文章
百度学术
百度学术中相似的文章
[Wang, Jingwen]的文章
[Yan, Yuguang]的文章
[Xu, Yanwu]的文章
必应学术
必应学术中相似的文章
[Wang, Jingwen]的文章
[Yan, Yuguang]的文章
[Xu, Yanwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。