题名 | Memory-attended recurrent network for video captioning |
作者 | |
通讯作者 | Tai, Yu-Wing |
DOI | |
发表日期 | 2019
|
ISSN | 1063-6919
|
ISBN | 978-1-7281-3294-5
|
会议录名称 | |
卷号 | 2019-June
|
页码 | 8339-8348
|
会议日期 | 15-20 June 2019
|
会议地点 | Long Beach, CA, United states
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Typical techniques for video captioning follow the encoder-decoder framework, which can only focus on one source video being processed. A potential disadvantage of such design is that it cannot capture the multiple visual context information of a word appearing in more than one relevant videos in training data. To tackle this limitation, we propose the Memory-Attended Recurrent Network (MARN) for video captioning, in which a memory structure is designed to explore the full-spectrum correspondence between a word and its various similar visual contexts across videos in training data. Thus, our model is able to achieve a more comprehensive understanding for each word and yield higher captioning quality. Furthermore, the built memory structure enables our method to model the compatibility between adjacent words explicitly instead of asking the model to learn implicitly, as most existing models do. Extensive validation on two real-word datasets demonstrates that our MARN consistently outperforms state-of-the-art methods. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000542649301097
|
EI入藏号 | 20200508114468
|
EI主题词 | Recurrent neural networks
|
EI分类号 | Computer Applications:723.5
; Vision:741.2
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953335 |
引用统计 |
被引频次[WOS]:150
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104891 |
专题 | 南方科技大学 未来网络研究院 |
作者单位 | 1.Tencent, China 2.Southern University of Science and Technology, China |
推荐引用方式 GB/T 7714 |
Pei, Wenjie,Zhang, Jiyuan,Wang, Xiangrong,et al. Memory-attended recurrent network for video captioning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2019:8339-8348.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论