中文版 | English
题名

Deep asymmetric metric learning via rich relationship mining

作者
通讯作者Deng, Cheng
DOI
发表日期
2019
ISSN
1063-6919
ISBN
978-1-7281-3294-5
会议录名称
卷号
2019-June
页码
4071-4080
会议日期
15-20 June 2019
会议地点
Long Beach, CA, United states
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Learning effective distance metric between data has gained increasing popularity, for its promising performance on various tasks, such as face verification, zero-shot learning, and image retrieval. A major line of researches employs hard data mining, which makes efforts on searching a subset of significant data. However, hard data mining based approaches only rely on a small percentage of data, which is apt to overfitting. This motivates us to propose a novel framework, named deep asymmetric metric learning via rich relationship mining (DAMLRRM), to mine rich relationship under satisfying sampling size. DAMLRRM constructs two asymmetric data streams that are differently structured and of unequal length. The asymmetric structure enables the two data streams to interlace each other, which allows for the informative comparison between new data pairs over iterations. To improve the generalization ability, we further relax the constraint on the intra-class relationship. Rather than greedily connecting all possible positive pairs, DAMLRRM builds a minimum-cost spanning tree within each category to ensure the formation of a connected region. As such there exists at least one direct or indirect path between arbitrary positive pairs to bridge intra-class relevance. Extensive experimental results on three benchmark datasets including CUB-200-2011, Cars196, and Stanford Online Products show that DAMLRRM effectively boosts the performance of existing deep metric learning approaches.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2017YFE0104100] ; [2018ZDXM-GY-176] ; National Natural Science Foundation of China[61572388]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000529484004026
EI入藏号
20200508114010
EI主题词
Benchmarking ; Deep learning ; Data mining ; Zero-shot learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953983
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104892
专题工学院_计算机科学与工程系
作者单位
1.School of Electronic Engineering, Xidian University, Xian; 710071, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Xu, Xinyi,Yang, Yanhua,Deng, Cheng,et al. Deep asymmetric metric learning via rich relationship mining[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2019:4071-4080.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Xinyi]的文章
[Yang, Yanhua]的文章
[Deng, Cheng]的文章
百度学术
百度学术中相似的文章
[Xu, Xinyi]的文章
[Yang, Yanhua]的文章
[Deng, Cheng]的文章
必应学术
必应学术中相似的文章
[Xu, Xinyi]的文章
[Yang, Yanhua]的文章
[Deng, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。