题名 | Deep spectral clustering using dual autoencoder network |
作者 | |
通讯作者 | Deng, Cheng |
DOI | |
发表日期 | 2019
|
ISSN | 1063-6919
|
ISBN | 978-1-7281-3294-5
|
会议录名称 | |
卷号 | 2019-June
|
页码 | 4061-4070
|
会议日期 | 15-20 June 2019
|
会议地点 | Long Beach, CA, United states
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | [2017YFE0104100]
; [2018ZDXM-GY-176]
; National Natural Science Foundation of China[61602176]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000529484004025
|
EI入藏号 | 20200508114705
|
EI主题词 | Deep learning
; Clustering algorithms
; Embeddings
; Computer vision
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Vision:741.2
; Information Sources and Analysis:903.1
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953592 |
引用统计 |
被引频次[WOS]:201
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104894 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Electronic Engineering, Xidian University, Xian; 710071, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, China 3.Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China 4.Tencent AI Lab, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Yang, Xu,Deng, Cheng,Zheng, Feng,et al. Deep spectral clustering using dual autoencoder network[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2019:4061-4070.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论