中文版 | English
题名

Deep spectral clustering using dual autoencoder network

作者
通讯作者Deng, Cheng
DOI
发表日期
2019
ISSN
1063-6919
ISBN
978-1-7281-3294-5
会议录名称
卷号
2019-June
页码
4061-4070
会议日期
15-20 June 2019
会议地点
Long Beach, CA, United states
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2017YFE0104100] ; [2018ZDXM-GY-176] ; National Natural Science Foundation of China[61602176]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000529484004025
EI入藏号
20200508114705
EI主题词
Deep learning ; Clustering algorithms ; Embeddings ; Computer vision
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Information Sources and Analysis:903.1
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953592
引用统计
被引频次[WOS]:201
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104894
专题工学院_计算机科学与工程系
作者单位
1.School of Electronic Engineering, Xidian University, Xian; 710071, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China
4.Tencent AI Lab, Shenzhen, China
推荐引用方式
GB/T 7714
Yang, Xu,Deng, Cheng,Zheng, Feng,et al. Deep spectral clustering using dual autoencoder network[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2019:4061-4070.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xu]的文章
[Deng, Cheng]的文章
[Zheng, Feng]的文章
百度学术
百度学术中相似的文章
[Yang, Xu]的文章
[Deng, Cheng]的文章
[Zheng, Feng]的文章
必应学术
必应学术中相似的文章
[Yang, Xu]的文章
[Deng, Cheng]的文章
[Zheng, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。