题名 | Sim-real joint reinforcement transfer for 3D indoor navigation |
作者 | |
通讯作者 | Yang, Yi |
DOI | |
发表日期 | 2019
|
ISSN | 1063-6919
|
ISBN | 978-1-7281-3294-5
|
会议录名称 | |
卷号 | 2019-June
|
页码 | 11380-11389
|
会议日期 | 15-20 June 2019
|
会议地点 | Long Beach, CA, United states
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | There has been an increasing interest in 3D indoor navigation, where a robot in an environment moves to a target according to an instruction. To deploy a robot for navigation in the physical world, lots of training data is required to learn an effective policy. It is quite labour intensive to obtain sufficient real environment data for training robots while synthetic data is much easier to construct by render-ing. Though it is promising to utilize the synthetic environments to facilitate navigation training in the real world, real environment are heterogeneous from synthetic environment in two aspects. First, the visual representation of the two environments have significant variances. Second, the houseplans of these two environments are quite different. There-fore two types of information,i.e. visual representation and policy behavior, need to be adapted in the reinforce mentmodel. The learning procedure of visual representation and that of policy behavior are presumably reciprocal. We pro-pose to jointly adapt visual representation and policy behavior to leverage the mutual impacts of environment and policy. Specifically, our method employs an adversarial feature adaptation model for visual representation transfer anda policy mimic strategy for policy behavior imitation. Experiment shows that our method outperforms the baseline by 19.47% without any additional human annotations. © 2019 IEEE. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000542649304101
|
EI入藏号 | 20200508113552
|
EI主题词 | Deep learning
; Reinforcement learning
; Indoor positioning systems
; Intelligent robots
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
; Robot Applications:731.6
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953924 |
引用统计 |
被引频次[WOS]:18
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/104896 |
专题 | 南方科技大学 |
作者单位 | 1.UTS-SUSTech Joint Research Centre, Southern University of Science and Technology, China 2.CAI, University of Technology Sydney, Australia 3.Baidu Research |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhu, Fengda,Zhu, Linchao,Yang, Yi. Sim-real joint reinforcement transfer for 3D indoor navigation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2019:11380-11389.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论