中文版 | English
题名

Sim-real joint reinforcement transfer for 3D indoor navigation

作者
通讯作者Yang, Yi
DOI
发表日期
2019
ISSN
1063-6919
ISBN
978-1-7281-3294-5
会议录名称
卷号
2019-June
页码
11380-11389
会议日期
15-20 June 2019
会议地点
Long Beach, CA, United states
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
There has been an increasing interest in 3D indoor navigation, where a robot in an environment moves to a target according to an instruction. To deploy a robot for navigation in the physical world, lots of training data is required to learn an effective policy. It is quite labour intensive to obtain sufficient real environment data for training robots while synthetic data is much easier to construct by render-ing. Though it is promising to utilize the synthetic environments to facilitate navigation training in the real world, real environment are heterogeneous from synthetic environment in two aspects. First, the visual representation of the two environments have significant variances. Second, the houseplans of these two environments are quite different. There-fore two types of information,i.e. visual representation and policy behavior, need to be adapted in the reinforce mentmodel. The learning procedure of visual representation and that of policy behavior are presumably reciprocal. We pro-pose to jointly adapt visual representation and policy behavior to leverage the mutual impacts of environment and policy. Specifically, our method employs an adversarial feature adaptation model for visual representation transfer anda policy mimic strategy for policy behavior imitation. Experiment shows that our method outperforms the baseline by 19.47% without any additional human annotations.
© 2019 IEEE.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000542649304101
EI入藏号
20200508113552
EI主题词
Deep learning ; Reinforcement learning ; Indoor positioning systems ; Intelligent robots
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Robot Applications:731.6
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8953924
引用统计
被引频次[WOS]:18
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104896
专题南方科技大学
作者单位
1.UTS-SUSTech Joint Research Centre, Southern University of Science and Technology, China
2.CAI, University of Technology Sydney, Australia
3.Baidu Research
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhu, Fengda,Zhu, Linchao,Yang, Yi. Sim-real joint reinforcement transfer for 3D indoor navigation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2019:11380-11389.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Fengda]的文章
[Zhu, Linchao]的文章
[Yang, Yi]的文章
百度学术
百度学术中相似的文章
[Zhu, Fengda]的文章
[Zhu, Linchao]的文章
[Yang, Yi]的文章
必应学术
必应学术中相似的文章
[Zhu, Fengda]的文章
[Zhu, Linchao]的文章
[Yang, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。