中文版 | English
题名

Interpreting cnns via decision trees

作者
通讯作者Zhang, Quanshi
DOI
发表日期
2019
ISSN
1063-6919
会议录名称
卷号
2019-June
页码
6254-6263
会议地点
Long Beach, CA, United states
出版者
摘要
This paper aims to quantitatively explain the rationales of each prediction that is made by a pre-trained convolutional neural network (CNN). We propose to learn a decision tree, which clarifies the specific reason for each prediction made by the CNN at the semantic level. I.e., the decision tree decomposes feature representations in high conv-layers of the CNN into elementary concepts of object parts. In this way, the decision tree tells people which object parts activate which filters for the prediction and how much each object part contributes to the prediction score. Such semantic and quantitative explanations for CNN predictions have specific values beyond the traditional pixel-level analysis of CNNs. More specifically, our method mines all potential decision modes of the CNN, where each mode represents a typical case of how the CNN uses object parts for prediction. The decision tree organizes all potential decision modes in a coarse-to-fine manner to explain CNN predictions at different fine-grained levels. Experiments have demonstrated the effectiveness of the proposed method.
© 2019 IEEE.
学校署名
其他
收录类别
资助项目
Army Research Office[W911NF1810296] ; National Science Foundation[IIS 1423305] ; Defense Advanced Research Projects Agency[N66001-17-2-4029] ; Shanghai Jiao Tong University[]
EI入藏号
20200508113545
EI主题词
Computer vision ; Forecasting ; Neural networks ; Semantic Segmentation ; Deep learning ; Semantics
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
来源库
EV Compendex
引用统计
被引频次[WOS]:160
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/104897
专题南方科技大学
作者单位
1.Shanghai Jiao Tong University, China
2.University of California, Los Angeles, United States
3.Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Zhang, Quanshi,Yang, Yu,Ma, Haotian,et al. Interpreting cnns via decision trees[C]:IEEE Computer Society,2019:6254-6263.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Quanshi]的文章
[Yang, Yu]的文章
[Ma, Haotian]的文章
百度学术
百度学术中相似的文章
[Zhang, Quanshi]的文章
[Yang, Yu]的文章
[Ma, Haotian]的文章
必应学术
必应学术中相似的文章
[Zhang, Quanshi]的文章
[Yang, Yu]的文章
[Ma, Haotian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。