中文版 | English
题名

Kernel truncated regression representation for robust subspace clustering

作者
通讯作者Peng,Dezhong
发表日期
2020-07-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号524页码:59-76
摘要
Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61432012][61329302][61625204][61971296][U19A2078] ; Engineering and Physical Sciences Research Council (EPSRC) of U.K.[EP/J017515/1] ; Ministry of Education & China Mobile Research Funding[MCM20180405] ; Sichuan Science and Technology Planning Projects[2019YFG0495][2019YFH0075] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000530095300005
出版者
EI入藏号
20201308336576
EI主题词
Large dataset ; Graphic methods ; Input output programs ; Regression analysis
EI分类号
Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Mathematical Statistics:922.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85082000991
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106303
专题工学院_计算机科学与工程系
作者单位
1.Institute of High Performance Computing,A*STAR,138632,Singapore
2.College of Computer Science,Sichuan University,Chengdu,610065,China
3.Peng Cheng Laboratory,Shenzhen,518055,China
4.Chengdu Sobey Digital Technology Co.,Ltd.,Chengdu,610041,China
5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
6.CERCIA,School of Computer Science,University of Birmingham,Birmingham,B15 2TT,United Kingdom
推荐引用方式
GB/T 7714
Zhen,Liangli,Peng,Dezhong,Wang,Wei,et al. Kernel truncated regression representation for robust subspace clustering[J]. INFORMATION SCIENCES,2020,524:59-76.
APA
Zhen,Liangli,Peng,Dezhong,Wang,Wei,&Yao,Xin.(2020).Kernel truncated regression representation for robust subspace clustering.INFORMATION SCIENCES,524,59-76.
MLA
Zhen,Liangli,et al."Kernel truncated regression representation for robust subspace clustering".INFORMATION SCIENCES 524(2020):59-76.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhen,Liangli]的文章
[Peng,Dezhong]的文章
[Wang,Wei]的文章
百度学术
百度学术中相似的文章
[Zhen,Liangli]的文章
[Peng,Dezhong]的文章
[Wang,Wei]的文章
必应学术
必应学术中相似的文章
[Zhen,Liangli]的文章
[Peng,Dezhong]的文章
[Wang,Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。