题名 | Kernel truncated regression representation for robust subspace clustering |
作者 | |
通讯作者 | Peng,Dezhong |
发表日期 | 2020-07-01
|
DOI | |
发表期刊 | |
ISSN | 0020-0255
|
EISSN | 1872-6291
|
卷号 | 524页码:59-76 |
摘要 | Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[61432012][61329302][61625204][61971296][U19A2078]
; Engineering and Physical Sciences Research Council (EPSRC) of U.K.[EP/J017515/1]
; Ministry of Education & China Mobile Research Funding[MCM20180405]
; Sichuan Science and Technology Planning Projects[2019YFG0495][2019YFH0075]
; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386]
; Shenzhen Peacock Plan[KQTD2016112514355531]
; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
|
WOS记录号 | WOS:000530095300005
|
出版者 | |
EI入藏号 | 20201308336576
|
EI主题词 | Large dataset
; Graphic methods
; Input output programs
; Regression analysis
|
EI分类号 | Computer Programming:723.1
; Data Processing and Image Processing:723.2
; Information Sources and Analysis:903.1
; Mathematical Statistics:922.2
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85082000991
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/106303 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Institute of High Performance Computing,A*STAR,138632,Singapore 2.College of Computer Science,Sichuan University,Chengdu,610065,China 3.Peng Cheng Laboratory,Shenzhen,518055,China 4.Chengdu Sobey Digital Technology Co.,Ltd.,Chengdu,610041,China 5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 6.CERCIA,School of Computer Science,University of Birmingham,Birmingham,B15 2TT,United Kingdom |
推荐引用方式 GB/T 7714 |
Zhen,Liangli,Peng,Dezhong,Wang,Wei,et al. Kernel truncated regression representation for robust subspace clustering[J]. INFORMATION SCIENCES,2020,524:59-76.
|
APA |
Zhen,Liangli,Peng,Dezhong,Wang,Wei,&Yao,Xin.(2020).Kernel truncated regression representation for robust subspace clustering.INFORMATION SCIENCES,524,59-76.
|
MLA |
Zhen,Liangli,et al."Kernel truncated regression representation for robust subspace clustering".INFORMATION SCIENCES 524(2020):59-76.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论