题名 | Computational network biology: Data, models, and applications |
作者 | |
通讯作者 | Zhang,Yi Cheng; Cheng,Feixiong; Zhang,Zi Ke |
发表日期 | 2020-03-03
|
DOI | |
发表期刊 | |
ISSN | 0370-1573
|
EISSN | 1873-6270
|
卷号 | 846页码:1-66 |
摘要 | Biological entities are involved in intricate and complex interactions, in which uncovering the biological information from the network concepts are of great significance. Benefiting from the advances of network science and high-throughput biomedical technologies, studying the biological systems from network biology has attracted much attention in recent years, and networks have long been central to our understanding of biological systems, in the form of linkage maps among genotypes, phenotypes, and the corresponding environmental factors. In this review, we summarize the recent developments of computational network biology, first introducing various types of biological networks and network structural properties. We then review the network-based approaches, ranging from some network metrics to the complicated machine-learning methods, and emphasize how to use these algorithms to gain new biological insights. Furthermore, we highlight the application in neuroscience, human disease, and drug developments from the perspectives of network science, and we discuss some major challenges and future directions. We hope that this review will draw increasing interdisciplinary attention from physicists, computer scientists, and biologists. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | ESI高被引
|
学校署名 | 其他
|
资助项目 | National Cancer Institute, National Institutes of Health[HHSN261200800001E]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000525435900001
|
出版者 | |
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85077931492
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:129
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/106356 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Alibaba Research Center for Complexity Sciences,Hangzhou Normal University,Hangzhou,311121,China 2.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China 3.Institute of Interdisciplinary Integrative Medicine Research,Shanghai University of Traditional Chinese Medicine,Shanghai,China 4.Cancer and Inflammation Program,Leidos Biomedical Research,Inc.,Frederick National Laboratory for Cancer Research,National Cancer Institute at Frederick,Frederick,21702,United States 5.Department of Human Molecular Genetics and Biochemistry,Sackler School of Medicine,Tel Aviv University,Tel Aviv,69978,Israel 6.Genomic Medicine Institute,Lerner Research Institute,Cleveland Clinic,Cleveland,44195,United States 7.Department of Molecular Medicine,Cleveland Clinic Lerner College of Medicine,Case Western Reserve University,Cleveland,44195,United States 8.Case Comprehensive Cancer Center,Case Western Reserve University School of Medicine,Cleveland,44106,United States 9.Department of Physics,University of Fribourg,CH,Fribourg,1700,Switzerland 10.College of Media and International Culture,Zhejiang University,Hangzhou,310028,China |
推荐引用方式 GB/T 7714 |
Liu,Chuang,Ma,Yifang,Zhao,Jing,et al. Computational network biology: Data, models, and applications[J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS,2020,846:1-66.
|
APA |
Liu,Chuang.,Ma,Yifang.,Zhao,Jing.,Nussinov,Ruth.,Zhang,Yi Cheng.,...&Zhang,Zi Ke.(2020).Computational network biology: Data, models, and applications.PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS,846,1-66.
|
MLA |
Liu,Chuang,et al."Computational network biology: Data, models, and applications".PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 846(2020):1-66.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
phys rep Computation(7669KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论