中文版 | English
题名

Bayesian weighted Mendelian randomization for causal inference based on summary statistics

作者
通讯作者Yang,Can
发表日期
2020-03-01
DOI
发表期刊
ISSN
1367-4803
EISSN
1460-2059
卷号36期号:5页码:1501-1508
摘要
Motivation: The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results: We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Science Funding of China[61501389] ; Hong Kong Research Grant Council[12316116][12301417][16307818] ; Hong Kong University of Science and Technology[R9405][IGN17SC02] ; Duke-NUS Medical School 546 WBS[R-913-200-098-263] ; Ministry of Education, Singapore. AcRF Tier 2[MOE2016-T2-2-547 029][MOE2018-T2-1-046][MOE2018-T2-2-006]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:000535656600024
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85081737169
来源库
Scopus
引用统计
被引频次[WOS]:76
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106368
专题理学院_数学系
作者单位
1.Department of Mathematics,Hong Kong University of Science and Technology,Hong Kong SAR,999077,Hong Kong
2.School of Mathematical Sciences,Beijing Normal University,Beijing,100875,China
3.Department of Mathematics,Hong Kong Baptist University,Hong Kong SAR,999077,Hong Kong
4.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
5.WeGene Company,Shenzhen,518042,China
6.Centre for Quantitative Medicine,Duke-NUS Medical School,Singapore,169857,Singapore
7.
推荐引用方式
GB/T 7714
Zhao,Jia,Ming,Jingsi,Hu,Xianghong,et al. Bayesian weighted Mendelian randomization for causal inference based on summary statistics[J]. BIOINFORMATICS,2020,36(5):1501-1508.
APA
Zhao,Jia.,Ming,Jingsi.,Hu,Xianghong.,Chen,Gang.,Liu,Jin.,...&Schwartz,Russell.(2020).Bayesian weighted Mendelian randomization for causal inference based on summary statistics.BIOINFORMATICS,36(5),1501-1508.
MLA
Zhao,Jia,et al."Bayesian weighted Mendelian randomization for causal inference based on summary statistics".BIOINFORMATICS 36.5(2020):1501-1508.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Jia]的文章
[Ming,Jingsi]的文章
[Hu,Xianghong]的文章
百度学术
百度学术中相似的文章
[Zhao,Jia]的文章
[Ming,Jingsi]的文章
[Hu,Xianghong]的文章
必应学术
必应学术中相似的文章
[Zhao,Jia]的文章
[Ming,Jingsi]的文章
[Hu,Xianghong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。