题名 | DPre: Computational identification of differentiation bias and genes underlying cell type conversions |
作者 | |
通讯作者 | Hutchins,Andrew P. |
发表日期 | 2020-03-01
|
DOI | |
发表期刊 | |
ISSN | 1367-4803
|
EISSN | 1460-2059
|
卷号 | 36期号:5页码:1637-1639 |
摘要 | Summary: Cells are generally resistant to cell type conversions, but can be converted by the application of growth factors, chemical inhibitors and ectopic expression of genes. However, it remains difficult to accurately identify the destination cell type or differentiation bias when these techniques are used to alter cell type. Consequently, there is demand for computational techniques that can help researchers understand both the cell type and differentiation bias. While advanced tools identifying cell types exist for single cell data and the deconvolution of mixed cell populations, the problem of exploring partially differentiated cells of indeterminate transcriptional identity has not been addressed. To fill this gap, we developed driver-predictor, which relies on scoring per gene transcriptional similarity between RNA-Seq datasets to reveal directional bias of differentiation. By comparing against large cell type transcriptome libraries or a desired target expression profile, the tool enables the user to visualize both the changes in transcriptional identity as well as the genes accounting for the cell type changes. This software will be a powerful tool for researchers to explore in vitro experiments that involve cell type conversions. Availability and implementation: Source code is open source under the MIT license and is freely available on https://github.com/LoaloaF/DPre. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[31970589][31850410463][31850410486]
; Shenzhen Peacock plan[20170109068B]
|
WOS研究方向 | Biochemistry & Molecular Biology
; Biotechnology & Applied Microbiology
; Computer Science
; Mathematical & Computational Biology
; Mathematics
|
WOS类目 | Biochemical Research Methods
; Biotechnology & Applied Microbiology
; Computer Science, Interdisciplinary Applications
; Mathematical & Computational Biology
; Statistics & Probability
|
WOS记录号 | WOS:000535656600045
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
Scopus记录号 | 2-s2.0-85081731957
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/106369 |
专题 | 生命科学学院_生物系 生命科学学院 |
作者单位 | Department of Biology,Southern University of Science and Technology,Shenzhen, Guangdong,518055,China |
第一作者单位 | 生物系; 生命科学学院 |
通讯作者单位 | 生物系; 生命科学学院 |
第一作者的第一单位 | 生物系; 生命科学学院 |
推荐引用方式 GB/T 7714 |
Steffens,Simon,Fu,Xiuling,He,Fangfang,et al. DPre: Computational identification of differentiation bias and genes underlying cell type conversions[J]. BIOINFORMATICS,2020,36(5):1637-1639.
|
APA |
Steffens,Simon,Fu,Xiuling,He,Fangfang,Li,Yuhao,Babarinde,Isaac A.,&Hutchins,Andrew P..(2020).DPre: Computational identification of differentiation bias and genes underlying cell type conversions.BIOINFORMATICS,36(5),1637-1639.
|
MLA |
Steffens,Simon,et al."DPre: Computational identification of differentiation bias and genes underlying cell type conversions".BIOINFORMATICS 36.5(2020):1637-1639.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论