中文版 | English
题名

DPre: Computational identification of differentiation bias and genes underlying cell type conversions

作者
通讯作者Hutchins,Andrew P.
发表日期
2020-03-01
DOI
发表期刊
ISSN
1367-4803
EISSN
1460-2059
卷号36期号:5页码:1637-1639
摘要
Summary: Cells are generally resistant to cell type conversions, but can be converted by the application of growth factors, chemical inhibitors and ectopic expression of genes. However, it remains difficult to accurately identify the destination cell type or differentiation bias when these techniques are used to alter cell type. Consequently, there is demand for computational techniques that can help researchers understand both the cell type and differentiation bias. While advanced tools identifying cell types exist for single cell data and the deconvolution of mixed cell populations, the problem of exploring partially differentiated cells of indeterminate transcriptional identity has not been addressed. To fill this gap, we developed driver-predictor, which relies on scoring per gene transcriptional similarity between RNA-Seq datasets to reveal directional bias of differentiation. By comparing against large cell type transcriptome libraries or a desired target expression profile, the tool enables the user to visualize both the changes in transcriptional identity as well as the genes accounting for the cell type changes. This software will be a powerful tool for researchers to explore in vitro experiments that involve cell type conversions. Availability and implementation: Source code is open source under the MIT license and is freely available on https://github.com/LoaloaF/DPre.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[31970589][31850410463][31850410486] ; Shenzhen Peacock plan[20170109068B]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:000535656600045
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85081731957
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106369
专题生命科学学院_生物系
生命科学学院
作者单位
Department of Biology,Southern University of Science and Technology,Shenzhen, Guangdong,518055,China
第一作者单位生物系;  生命科学学院
通讯作者单位生物系;  生命科学学院
第一作者的第一单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Steffens,Simon,Fu,Xiuling,He,Fangfang,et al. DPre: Computational identification of differentiation bias and genes underlying cell type conversions[J]. BIOINFORMATICS,2020,36(5):1637-1639.
APA
Steffens,Simon,Fu,Xiuling,He,Fangfang,Li,Yuhao,Babarinde,Isaac A.,&Hutchins,Andrew P..(2020).DPre: Computational identification of differentiation bias and genes underlying cell type conversions.BIOINFORMATICS,36(5),1637-1639.
MLA
Steffens,Simon,et al."DPre: Computational identification of differentiation bias and genes underlying cell type conversions".BIOINFORMATICS 36.5(2020):1637-1639.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Steffens,Simon]的文章
[Fu,Xiuling]的文章
[He,Fangfang]的文章
百度学术
百度学术中相似的文章
[Steffens,Simon]的文章
[Fu,Xiuling]的文章
[He,Fangfang]的文章
必应学术
必应学术中相似的文章
[Steffens,Simon]的文章
[Fu,Xiuling]的文章
[He,Fangfang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。