题名 | Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics |
作者 | |
通讯作者 | Su,Linlin |
共同第一作者 | Nakashima,Kimie; Su,Linlin |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 0022-0396
|
EISSN | 1090-2732
|
卷号 | 269期号:6页码:4643-4682 |
摘要 | We study the following Neumann problem in one-dimension space arising from population genetics: {u=du+h(x)u(1−u)in(−1,1)×(0,∞),0≤u≤1in(−1,1)×(0,∞),u(−1,t)=u(1,t)=0in(0,∞), where h changes sign in (−1,1) and d is a positive parameter. Lou and Nagylaki (2002) [6] conjectured that if ∫ h(x)dx≥0, then this problem has at most one nontrivial steady state (i.e., a time-independent solution which is not identically equal to zero or one). Nakashima (2018) [15] proved this uniqueness under some additional conditions on h(x). Unexpectedly, in this paper, we discover 3 nontrivial steady states for some h(x) satisfying ∫ h(x)dx≥0. Moreover, bi-stable phenomenon occurs in this scenario: one with two layers is stable; two with one layer each are ordered with the smaller one being stable and the larger one being unstable. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | JSPS[18K03358]
; NSFC[11501283][11671190]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:000538396200002
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85082535219
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/106395 |
专题 | 理学院_数学系 |
作者单位 | 1.Tokyo University of Marine Science and Technology,Tokyo,4-5-7 Kounan, Minato-ku,108-8477,Japan 2.Southern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Nakashima,Kimie,Su,Linlin. Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2020,269(6):4643-4682.
|
APA |
Nakashima,Kimie,&Su,Linlin.(2020).Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics.JOURNAL OF DIFFERENTIAL EQUATIONS,269(6),4643-4682.
|
MLA |
Nakashima,Kimie,et al."Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics".JOURNAL OF DIFFERENTIAL EQUATIONS 269.6(2020):4643-4682.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2020-JDE.pdf(998KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论