中文版 | English
题名

Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation

作者
通讯作者Zhang,Jianguo
DOI
发表日期
2020
会议名称
International Conference on Medical Image Computing and Computer-Assisted Intervention
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12009 LNCS
页码
317-325
会议日期
OCTOBER 2019
会议地点
Shenzhen
摘要

Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20201208325473
EI主题词
Image segmentation ; Diagnosis ; Diseases ; Magnetic resonance imaging ; Medical computing ; Heart ; Convolutional neural networks ; Medical imaging ; Learning systems ; Cardiology ; Convolution ; Deep learning
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Pipe, Piping and Pipelines:619.1 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85081932812
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106412
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.Technical University of Munich,Munich,Germany
3.Shenzhen Institute of Artificial Intelligence and Robotics for Society,Shenzhen,China
4.University of Dundee,Dundee,United Kingdom
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Jingkun,Li,Hongwei,Zhang,Jianguo,et al. Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation[C],2020:317-325.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Jingkun]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
百度学术
百度学术中相似的文章
[Chen,Jingkun]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
必应学术
必应学术中相似的文章
[Chen,Jingkun]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。