题名 | Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2020
|
会议名称 | International Conference on Medical Image Computing and Computer-Assisted Intervention
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12009 LNCS
|
页码 | 317-325
|
会议日期 | OCTOBER 2019
|
会议地点 | Shenzhen
|
摘要 | Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20201208325473
|
EI主题词 | Image segmentation
; Diagnosis
; Diseases
; Magnetic resonance imaging
; Medical computing
; Heart
; Convolutional neural networks
; Medical imaging
; Learning systems
; Cardiology
; Convolution
; Deep learning
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Pipe, Piping and Pipelines:619.1
; Magnetism: Basic Concepts and Phenomena:701.2
; Information Theory and Signal Processing:716.1
; Computer Applications:723.5
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85081932812
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/106412 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,China 2.Technical University of Munich,Munich,Germany 3.Shenzhen Institute of Artificial Intelligence and Robotics for Society,Shenzhen,China 4.University of Dundee,Dundee,United Kingdom |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Jingkun,Li,Hongwei,Zhang,Jianguo,et al. Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation[C],2020:317-325.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论