中文版 | English
题名

Shape-preserving finite elements in cylindrical and spherical geometries: The double Jacobian approach

作者
通讯作者Morgan,Jason P.
发表日期
2020
DOI
发表期刊
ISSN
0271-2091
EISSN
1097-0363
卷号92页码:635-668
摘要
We present a new technique, the “double Jacobian,” to solve problems in cylindrical or spherical geometries, for example, the Stokes flow problem for convection in Earth's mantle. Our approach combines the advantages of working simultaneously in Cartesian and polar or spherical coordinates. The governing matrix equations are kept in Cartesian coordinates, thereby preserving their Cartesian symmetry. However, the element geometry is described as a linear simplex in polar or spherical coordinates, thereby preserving appropriate cylindrical or spherical surfaces and internal interfaces. Isoparametric representations can still be used to define complex surface shapes. Using linear polar or spherical elements allows search routines for triangular or tetrahedral simplexes to rapidly find arbitrary points in terms of their polar or spherical coordinates. The double Jacobian approach becomes especially powerful when element sizes vary strongly within the mesh, while the exact cylindrical or spherical surfaces or internal interfaces have to be preserved, as happens in several geophysical applications.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000514280000001
EI入藏号
20200908211295
EI主题词
Finite element method ; Matrix algebra ; Natural convection
EI分类号
Heat Transfer:641.2 ; Algebra:921.1 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85079887643
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106450
专题工学院_海洋科学与工程系
作者单位
1.Department of Ocean Science and Engineering,SUSTech,Shenzen,China
2.Department of Earth Sciences,Royal Holloway University of London,Egham,United Kingdom
3.Institute of Geophysics,Hamburg University,Hamburg,Germany
4.Jason P. Morgan,Department of Ocean Science and Engineering,SUSTech,Shenzhen,China
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Morgan,Jason P.,Taramón,Jorge M.,Hasenclever,Jörg. Shape-preserving finite elements in cylindrical and spherical geometries: The double Jacobian approach[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,2020,92:635-668.
APA
Morgan,Jason P.,Taramón,Jorge M.,&Hasenclever,Jörg.(2020).Shape-preserving finite elements in cylindrical and spherical geometries: The double Jacobian approach.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,92,635-668.
MLA
Morgan,Jason P.,et al."Shape-preserving finite elements in cylindrical and spherical geometries: The double Jacobian approach".INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS 92(2020):635-668.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Morgan,Jason P.]的文章
[Taramón,Jorge M.]的文章
[Hasenclever,Jörg]的文章
百度学术
百度学术中相似的文章
[Morgan,Jason P.]的文章
[Taramón,Jorge M.]的文章
[Hasenclever,Jörg]的文章
必应学术
必应学术中相似的文章
[Morgan,Jason P.]的文章
[Taramón,Jorge M.]的文章
[Hasenclever,Jörg]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。