中文版 | English
题名

Subjective feedback-based neural network pruning for speech enhancement

作者
通讯作者Chen,Fei
DOI
发表日期
2019-11-01
ISSN
2309-9402
ISBN
978-1-7281-3249-5
会议录名称
页码
673-677
会议日期
18-21 Nov. 2019
会议地点
Lanzhou, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Speech enhancement based on neural networks provides performance superior to that of conventional algorithms. However, the network may suffer owing to redundant parameters, which demands large unnecessary computation and power consumption. This work aimed to prune the large network by removing extra neurons and connections while maintaining speech enhancement performance. Iterative network pruning combined with network retraining was employed to compress the network based on the weight magnitude of neurons and connections. This pruning method was evaluated using a deep denoising autoencoder neural network, which was trained to enhance speech perception under nonstationary noise interference. Word correct rate was utilized as the subjective intelligibility feedback to evaluate the understanding of noisy speech enhanced by the sparse network. Results showed that the iterative pruning method combined with retraining could reduce 50% of the parameters without significantly affecting the speech enhancement performance, which was superior to the two baseline conditions of direct network pruning with network retraining and iterative network pruning without network retraining. Finally, an optimized network pruning method was proposed to implement the iterative network pruning and retraining in a greedy repetition manner, yielding a maximum pruning ratio of 80%.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Research Foundation of Department of Science and Technology of Guangdong Province[2018A050501001] ; Shenzhen High-level Overseas Talent Program[KQJSCX20180319114453986]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:000555696900114
EI入藏号
20201308362158
EI主题词
Speech intelligibility ; Iterative methods
EI分类号
Speech:751.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85082381842
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9023330
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106480
专题工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,China
2.Research Center for Information Technology Innovation,Academic Sinica,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Ye,Fuqiang,Tsao,Yu,Chen,Fei. Subjective feedback-based neural network pruning for speech enhancement[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:673-677.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye,Fuqiang]的文章
[Tsao,Yu]的文章
[Chen,Fei]的文章
百度学术
百度学术中相似的文章
[Ye,Fuqiang]的文章
[Tsao,Yu]的文章
[Chen,Fei]的文章
必应学术
必应学术中相似的文章
[Ye,Fuqiang]的文章
[Tsao,Yu]的文章
[Chen,Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。