中文版 | English
题名

Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo

作者
通讯作者Gao,Shenghua
DOI
发表日期
2019
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
11764 LNCS
页码
273-281
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Photoacoustic computed tomography (PACT) breaks through the depth restriction in optical imaging, and the contrast restriction in ultrasound imaging, which is achieved by receiving thermoelastically induced ultrasound signal triggered by an ultrashort laser pulse. The photoacoustic (PA) images reconstructed from the raw PA signals usually utilize conventional reconstruction algorithms, e.g. filtered back-projection. However, the performance of conventional reconstruction algorithms is usually limited by complex and uncertain physical parameters due to heterogeneous tissue structure. In recent years, deep learning has emerged to show great potential in the reconstruction problem. In this work, for the first time to our best knowledge, we propose to infuse the classical signal processing and certified knowledge into the deep learning for PA imaging reconstruction. Specifically, we make these contributions to propose a novel Knowledge Infusion Generative Adversarial Network (Ki-GAN) architecture that combines conventional delay-and-sum algorithm to reconstruct PA image. We train the network on a public clinical database. Our method shows better image reconstruction performance in cases of both full-sampled data and sparse-sampled data compared with state-of-the-art methods. Lastly, our proposed approach also shows high potential for other imaging modalities beyond PACT.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Microscopy ; Neurosciences & Neurology ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Microscopy ; Neuroimaging ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000548734200031
EI入藏号
20194807768342
EI主题词
Computerized tomography ; Ultrashort pulses ; Deep learning ; Medical imaging ; Generative adversarial networks ; Ultrasonic imaging ; Uncertainty analysis
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Imaging Techniques:746 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85075640123
来源库
Scopus
引用统计
被引频次[WOS]:40
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106531
专题工学院_计算机科学与工程系
作者单位
1.School of Information Science and Technology,ShanghaiTech University,Shanghai,201210,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,315201,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Guangdong,518055,China
推荐引用方式
GB/T 7714
Lan,Hengrong,Zhou,Kang,Yang,Changchun,et al. Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2019:273-281.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lan,Hengrong]的文章
[Zhou,Kang]的文章
[Yang,Changchun]的文章
百度学术
百度学术中相似的文章
[Lan,Hengrong]的文章
[Zhou,Kang]的文章
[Yang,Changchun]的文章
必应学术
必应学术中相似的文章
[Lan,Hengrong]的文章
[Zhou,Kang]的文章
[Yang,Changchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。