中文版 | English
题名

CS-Net: Channel and spatial attention network for curvilinear structure segmentation

作者
通讯作者Zhao,Yitian
DOI
发表日期
2019
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
11764 LNCS
页码
721-730
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
The detection of curvilinear structures in medical images, e.g., blood vessels or nerve fibers, is important in aiding management of many diseases. In this work, we propose a general unifying curvilinear structure segmentation network that works on different medical imaging modalities: optical coherence tomography angiography (OCT-A), color fundus image, and corneal confocal microscopy (CCM). Instead of the U-Net based convolutional neural network, we propose a novel network (CS-Net) which includes a self-attention mechanism in the encoder and decoder. Two types of attention modules are utilized - spatial attention and channel attention, to further integrate local features with their global dependencies adaptively. The proposed network has been validated on five datasets: two color fundus datasets, two corneal nerve datasets and one OCT-A dataset. Experimental results show that our method outperforms state-of-the-art methods, for example, sensitivities of corneal nerve fiber segmentation were at least 2% higher than the competitors. As a complementary output, we made manual annotations of two corneal nerve datasets which have been released for public access.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Science Foundation Program of China[61601029][61773297]
WOS研究方向
Computer Science ; Engineering ; Microscopy ; Neurosciences & Neurology ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Biomedical ; Microscopy ; Neuroimaging ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000548734200080
EI入藏号
20194807768305
EI主题词
Medical computing ; Medical imaging ; Decoding ; Optical tomography ; Network coding ; Image segmentation ; Neural networks ; Channel coding
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Information Theory and Signal Processing:716.1 ; Data Communication, Equipment and Techniques:722.3 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85075630946
来源库
Scopus
引用统计
被引频次[WOS]:161
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/106532
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan,China
2.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,China
3.Department of Ophthalmology,Peking University Third Hospital,Beijing,China
4.Department of Eye and Vision Science,University of Liverpool,Liverpool,United Kingdom
5.School of Computing,University of Leeds,Leeds,United Kingdom
6.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Mou,Lei,Zhao,Yitian,Chen,Li,et al. CS-Net: Channel and spatial attention network for curvilinear structure segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2019:721-730.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Chen,Li]的文章
百度学术
百度学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Chen,Li]的文章
必应学术
必应学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Chen,Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。