题名 | A 307-fps 351.7-GOPs/W Deep Learning FPGA Accelerator for Real-Time Scene Text Recognition |
作者 | |
DOI | |
发表日期 | 2019-12
|
会议名称 | 2019 International Conference on Field-Programmable Technology (ICFPT)
|
ISBN | 978-1-7281-2944-0
|
会议录名称 | |
卷号 | 2019-December
|
页码 | 263-266
|
会议日期 | 9-13 Dec. 2019
|
会议地点 | Tianjin
|
摘要 | FPGA-based deep learning accelerator has become important for high throughput and low power inference at edges. In this paper, we have developed a computing-in-memory (CIM) accelerator using the binary SegNet (BSEG) for real-time scene text recognition (STR) at edges. The accelerator can perform highly efficient pixel-wise character classification under CIM architecture with massive bit-level parallelism as well as optimized pipeline for low latency at critical path. The BSEG is obtained during training with a small model size of 2.1MB as well as a high classification accuracy over 90% on ICDAR-03 and ICDAR-13 datasets. The RTL-level realized FPGA-accelerator can process the STR with an energy-efficiency of 351.7 GOPs/W and a throughput of 307 fps for processing one frame of 128×32 pixels in latency of 3.875 ms. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20202108697377
|
EI主题词 | Deep learning
; Acceleration
; Pixels
; Classification (of information)
; Network coding
; Character recognition
; Energy efficiency
; Computing power
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Energy Conservation:525.2
; Information Theory and Signal Processing:716.1
; Logic Elements:721.2
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
; Information Sources and Analysis:903.1
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8977892 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/124833 |
专题 | 工学院_深港微电子学院 |
作者单位 | School of Microelectronics, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Zhao, Shirui,An, Fengwei,Yu, Hao. A 307-fps 351.7-GOPs/W Deep Learning FPGA Accelerator for Real-Time Scene Text Recognition[C],2019:263-266.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论