中文版 | English
题名

When and How to Transfer Knowledge in Dynamic Multi-objective Optimization

作者
发表日期
2019-12
会议名称
2019 IEEE Symposium Series on Computational Intelligence (SSCI)
会议录名称
页码
2034-2041
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is able to transfer useful information from one problem to help solving another related problem. This paper aims to investigate when and how transfer learning works or fails in dynamic multi-objective optimization. Through computational analyses on a number of dynamic bi- and tri-objective benchmark problems, we show that transfer learning fails on problems with fixed Pareto optimal solution sets and under small environmental changes. We also show that the Gaussian kernel function used in the existing transfer learning-based method is not always adequate. Therefore, transfer learning should be avoided when dealing with problems for which transfer learning fails and other kernel functions should be used when the Gaussian kernel is inadequate. This paper proposes novel strategies and kernel functions that can be used in such cases. Experimental studies have demonstrated the superiority of our proposed techniques to state-of-the-art methods, on a number of dynamic bi- and tri-objective test problems.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
European Union[766186] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000555467202018
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/124932
专题工学院_计算机科学与工程系
作者单位
1.CERCIA, School of Computer Science, University of Birmingham, UK
2.Honda Research Institute Europe GmbH, Offenbach 63073, Germany
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Ruan, Gan,Minku, Leandro L,Menzel, Stefan,et al. When and How to Transfer Knowledge in Dynamic Multi-objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:2034-2041.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L]的文章
[Menzel, Stefan]的文章
百度学术
百度学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L]的文章
[Menzel, Stefan]的文章
必应学术
必应学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L]的文章
[Menzel, Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。