题名 | Efficient Evolutionary Deep Neural Architecture Search (NAS) by Noisy Network Morphism Mutation |
作者 | |
通讯作者 | He, Cheng; Cheng, Ran |
发表日期 | 2019-11
|
会议名称 | Bio-inspired Computing: Theories and Applications
|
会议录名称 | |
页码 | 497-508
|
会议日期 | November 22–25, 2019
|
会议地点 | Zhengzhou, China
|
摘要 | Deep learning has achieved enormous breakthroughs in the field of image recognition. However, due to the time-consuming and error-prone process in discovering novel neural architecture, it remains a challenge for designing a specific network in handling a particular task. Hence, many automated neural architecture search methods are proposed to find suitable deep neural network architecture for a specific task without human experts. Nevertheless, these methods are still computationally/ |
学校署名 | 通讯
|
语种 | 英语
|
收录类别 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/124936 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Chen, Yiming,Pan, Tianci,He, Cheng,et al. Efficient Evolutionary Deep Neural Architecture Search (NAS) by Noisy Network Morphism Mutation[C],2019:497-508.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
BIC-TA submission 66(119KB) | -- | -- | 限制开放 | -- | ||
Efficient Evolutiona(420KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论