中文版 | English
题名

Efficient Evolutionary Deep Neural Architecture Search (NAS) by Noisy Network Morphism Mutation

作者
通讯作者He, Cheng; Cheng, Ran
发表日期
2019-11
会议名称
Bio-inspired Computing: Theories and Applications
会议录名称
页码
497-508
会议日期
November 22–25, 2019
会议地点
Zhengzhou, China
摘要

Deep learning has achieved enormous breakthroughs in the field of image recognition. However, due to the time-consuming and error-prone process in discovering novel neural architecture, it remains a challenge for designing a specific network in handling a particular task. Hence, many automated neural architecture search methods are proposed to find suitable deep neural network architecture for a specific task without human experts. Nevertheless, these methods are still computationally/
economically expensive, since they require a vast amount of computing resource and/or computational time. In this paper, we propose several network morphism mutation operators with extra noise, and further redesign the macro-architecture based on the classical network. The proposed methods are embedded in an evolutionary algorithm and tested on CIFAR-10 classification task. Experimental results indicate the capability of our proposed method in discovering powerful neural architecture which has achieved a classification error 2.55% with only 4.7M parameters on CIFAR-10 within 12 GPU-hours.

学校署名
通讯
语种
英语
收录类别
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/124936
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology
推荐引用方式
GB/T 7714
Chen, Yiming,Pan, Tianci,He, Cheng,et al. Efficient Evolutionary Deep Neural Architecture Search (NAS) by Noisy Network Morphism Mutation[C],2019:497-508.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
BIC-TA submission 66(119KB)----限制开放--
Efficient Evolutiona(420KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yiming]的文章
[Pan, Tianci]的文章
[He, Cheng]的文章
百度学术
百度学术中相似的文章
[Chen, Yiming]的文章
[Pan, Tianci]的文章
[He, Cheng]的文章
必应学术
必应学术中相似的文章
[Chen, Yiming]的文章
[Pan, Tianci]的文章
[He, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。