题名 | Learning topological representation for networks via hierarchical sampling |
作者 | |
DOI | |
发表日期 | 2019-07
|
会议名称 | IJCNN 2019: International Joint Conference on Neural Networks
|
ISSN | 2161-4393
|
ISBN | 978-1-7281-1986-1
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 14-19 July 2019
|
会议地点 | Budapest, Hungary
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages in analyzing large-scale networks. However, most existing NRL methods are designed to preserve the local topology of a network and they fail to capture the global topology. To tackle this issue, we propose a new NRL framework, named HSRL, to help existing NRL methods capture both local and global topological information of a network. Specifically, HSRL recursively compresses an input network into a series of smaller networks using a community-awareness compressing strategy. Then, an existing NRL method is used to learn node embeddings for each compressed network. Finally, the node embeddings of the input network are obtained by concatenating the node embeddings resulting from all compressed networks. Empirical studies of link prediction on five real-world datasets demonstrate the advantages of HSRL over state-of-the-art methods. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2017YFC0804003]
|
WOS记录号 | WOS:000530893801085
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8851893 |
引用统计 |
被引频次[WOS]:19
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/124944 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Fu, Guoji,Hou, Chengbin,Yao, Xin. Learning topological representation for networks via hierarchical sampling[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论