中文版 | English
题名

Learning topological representation for networks via hierarchical sampling

作者
DOI
发表日期
2019-07
会议名称
IJCNN 2019: International Joint Conference on Neural Networks
ISSN
2161-4393
ISBN
978-1-7281-1986-1
会议录名称
页码
1-8
会议日期
14-19 July 2019
会议地点
Budapest, Hungary
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages in analyzing large-scale networks. However, most existing NRL methods are designed to preserve the local topology of a network and they fail to capture the global topology. To tackle this issue, we propose a new NRL framework, named HSRL, to help existing NRL methods capture both local and global topological information of a network. Specifically, HSRL recursively compresses an input network into a series of smaller networks using a community-awareness compressing strategy. Then, an existing NRL method is used to learn node embeddings for each compressed network. Finally, the node embeddings of the input network are obtained by concatenating the node embeddings resulting from all compressed networks. Empirical studies of link prediction on five real-world datasets demonstrate the advantages of HSRL over state-of-the-art methods.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key R&D Program of China[2017YFC0804003]
WOS记录号
WOS:000530893801085
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8851893
引用统计
被引频次[WOS]:19
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/124944
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Fu, Guoji,Hou, Chengbin,Yao, Xin. Learning topological representation for networks via hierarchical sampling[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu, Guoji]的文章
[Hou, Chengbin]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Fu, Guoji]的文章
[Hou, Chengbin]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Fu, Guoji]的文章
[Hou, Chengbin]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。