题名 | Nearest Neighbor based Digital Restoration of Damaged Ancient Chinese Paintings |
作者 | |
DOI | |
发表日期 | 2018
|
ISSN | 1546-1874
|
ISBN | 978-1-5386-6812-2
|
会议录名称 | |
卷号 | 2018-November
|
页码 | 1-5
|
会议日期 | 19-21 Nov. 2018
|
会议地点 | Shanghai, China
|
会议举办国 | 中国
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Most ancient artworks have structure damage problems, such as tears, flakes and cracks. This work gives an initial study of digital restoration of damaged ancient Chinese paintings via nearest neighboring method, which is an effective non-parameter machine learning algorithm. We first present a damage detection method to estimate the mask, and then a patch based image inpainting algorithm is performed to reconstruct the damaged paintings. Our experiments illustrate the restoration performance of the proposed method by using ancient Chinese paintings. Moreover, we also provide discussion on the future research topics about automatic damage detection and image inpainting via deep learning algorithms. © 2018 IEEE. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000458909600015
|
EI入藏号 | 20191106629324
|
EI主题词 | Damage detection
; Deep learning
; Historic preservation
; Image processing
; Learning algorithms
; Machine learning
; Restoration
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Machine Learning:723.4.2
; Coating Techniques:813.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8631553 |
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/124970 |
专题 | 南方科技大学 前沿与交叉科学研究院 |
作者单位 | Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zeng Y,Yi Gong. Nearest Neighbor based Digital Restoration of Damaged Ancient Chinese Paintings[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2018:1-5.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Nearest Neighbor bas(3930KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论