中文版 | English
题名

DEEPEYE: A Deeply Tensor-Compressed Neural Network Hardware Accelerator

作者
通讯作者Cheng, Yuan
DOI
发表日期
2019
会议名称
38th IEEE/ACM International Conference on Computer-Aided Design
ISSN
1933-7760
ISBN
978-1-7281-2351-6
会议录名称
卷号
2019-November
页码
1-8
会议日期
2019
会议地点
Westin Westminster, CO, United states
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Video detection and classification constantly involve high dimensional data that requires a deep neural network (DNN) with huge number of parameters. It is thereby quite challenging to develop a DNN video comprehension at terminal devices. In this paper, we introduce a deeply tensor compressed video comprehension neural network called DEEPEYE for inference at terminal devices. Instead of building a Long Short-Term Memory (LSTM) network directly from raw video data, we build a LSTM-based spatio-temporal model from tensorized time-series features for object detection and action recognition. Moreover, a deep compression is achieved by tensor decomposition and trained quantization of the time-series feature-based spatio-temporal model. We have implemented DEEPEYE on an ARM-core based IOT board with only 2.4W power consumption. Using the video datasets MOMENTS and UCF11 as benchmarks, DEEPEYE achieves a 228.1x model compression with only 0.47% mAP deduction; as well as 15kx parameter reduction yet 16.27% accuracy improvement.

关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000524676400013
EI入藏号
20200308042729
EI主题词
Classification (Of Information) ; Clustering Algorithms ; Computer Aided Design ; Deep Neural Networks ; Object Detection ; Tensors ; Time Series
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Algebra:921.1 ; Mathematical Statistics:922.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8942052
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/125662
专题工学院_深港微电子学院
作者单位
1.Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Shanghai, Peoples R China
2.Southern Univ Sci & Technol, Sch Microelect, Shenzhen, Peoples R China
3.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Yuan,Li, Guangya,Wong, Ngai,et al. DEEPEYE: A Deeply Tensor-Compressed Neural Network Hardware Accelerator[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng, Yuan]的文章
[Li, Guangya]的文章
[Wong, Ngai]的文章
百度学术
百度学术中相似的文章
[Cheng, Yuan]的文章
[Li, Guangya]的文章
[Wong, Ngai]的文章
必应学术
必应学术中相似的文章
[Cheng, Yuan]的文章
[Li, Guangya]的文章
[Wong, Ngai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。