题名 | DEEPEYE: A Deeply Tensor-Compressed Neural Network Hardware Accelerator |
作者 | |
通讯作者 | Cheng, Yuan |
DOI | |
发表日期 | 2019
|
会议名称 | 38th IEEE/ACM International Conference on Computer-Aided Design
|
ISSN | 1933-7760
|
ISBN | 978-1-7281-2351-6
|
会议录名称 | |
卷号 | 2019-November
|
页码 | 1-8
|
会议日期 | 2019
|
会议地点 | Westin Westminster, CO, United states
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Video detection and classification constantly involve high dimensional data that requires a deep neural network (DNN) with huge number of parameters. It is thereby quite challenging to develop a DNN video comprehension at terminal devices. In this paper, we introduce a deeply tensor compressed video comprehension neural network called DEEPEYE for inference at terminal devices. Instead of building a Long Short-Term Memory (LSTM) network directly from raw video data, we build a LSTM-based spatio-temporal model from tensorized time-series features for object detection and action recognition. Moreover, a deep compression is achieved by tensor decomposition and trained quantization of the time-series feature-based spatio-temporal model. We have implemented DEEPEYE on an ARM-core based IOT board with only 2.4W power consumption. Using the video datasets MOMENTS and UCF11 as benchmarks, DEEPEYE achieves a 228.1x model compression with only 0.47% mAP deduction; as well as 15kx parameter reduction yet 16.27% accuracy improvement. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000524676400013
|
EI入藏号 | 20200308042729
|
EI主题词 | Classification (Of Information)
; Clustering Algorithms
; Computer Aided Design
; Deep Neural Networks
; Object Detection
; Tensors
; Time Series
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Information Sources and Analysis:903.1
; Algebra:921.1
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8942052 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/125662 |
专题 | 工学院_深港微电子学院 |
作者单位 | 1.Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Shanghai, Peoples R China 2.Southern Univ Sci & Technol, Sch Microelect, Shenzhen, Peoples R China 3.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 |
Cheng, Yuan,Li, Guangya,Wong, Ngai,et al. DEEPEYE: A Deeply Tensor-Compressed Neural Network Hardware Accelerator[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论