中文版 | English
题名

DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices

作者
通讯作者Hai-Bao Chen; Hao Yu
发表日期
2020-02
DOI
发表期刊
ISSN
1539-9087
卷号19期号:3
摘要

Video object detection and action recognition typically require deep neural networks (DNNs) with huge number of parameters. It is thereby challenging to develop a DNN video comprehension unit in resource-constrained terminal devices. In this article, we introduce a deeply tensor-compressed video comprehension neural network, called DEEPEYE, for inference on terminal devices. Instead of building a Long Short-Term Memory (LSTM) network directly from high-dimensional raw video data input, we construct an LSTM-based spatio-temporal model from structured, tensorized time-series features for object detection and action recognition. A deep compression is achieved by tensor decomposition and trained quantization of the time-series feature-based LSTM network. We have implemented DEEPEYE on an ARM-core-based IOT board with 31 FPS consuming only 2.4W power. Using the video datasets MOMENTS, UCF11 and HMDB51 as benchmarks, DEEPEYE achieves a 228.1x model compression with only 0.47% mAP reduction; as well as 15kx parameter reduction with up to 8.01% accuracy improvement over other competing approaches.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Nature Science Foundation of China (NSFC)[61604095] ; Science and Technology Innovation Committee Foundation of Shenzhen[JCYJ20180504165652917]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号
WOS:000582627100004
出版者
EI入藏号
20203409061973
EI主题词
Feature extraction ; Image compression ; Object recognition ; Tensors ; Long short-term memory ; Time series ; Video recording ; Deep neural networks
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Television Systems and Equipment:716.4 ; Data Processing and Image Processing:723.2 ; Algebra:921.1 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/125697
专题南方科技大学
工学院_深港微电子学院
作者单位
1.Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
3.Univ Hong Kong, Hong Kong, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yuan Cheng,Guangya Li,Ngai Wong,et al. DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices[J]. ACM Transactions on Embedded Computing Systems,2020,19(3).
APA
Yuan Cheng,Guangya Li,Ngai Wong,Hai-Bao Chen,&Hao Yu.(2020).DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices.ACM Transactions on Embedded Computing Systems,19(3).
MLA
Yuan Cheng,et al."DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices".ACM Transactions on Embedded Computing Systems 19.3(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan Cheng]的文章
[Guangya Li]的文章
[Ngai Wong]的文章
百度学术
百度学术中相似的文章
[Yuan Cheng]的文章
[Guangya Li]的文章
[Ngai Wong]的文章
必应学术
必应学术中相似的文章
[Yuan Cheng]的文章
[Guangya Li]的文章
[Ngai Wong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。