题名 | DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices |
作者 | |
通讯作者 | Hai-Bao Chen; Hao Yu |
发表日期 | 2020-02
|
DOI | |
发表期刊 | |
ISSN | 1539-9087
|
卷号 | 19期号:3 |
摘要 | Video object detection and action recognition typically require deep neural networks (DNNs) with huge number of parameters. It is thereby challenging to develop a DNN video comprehension unit in resource-constrained terminal devices. In this article, we introduce a deeply tensor-compressed video comprehension neural network, called DEEPEYE, for inference on terminal devices. Instead of building a Long Short-Term Memory (LSTM) network directly from high-dimensional raw video data input, we construct an LSTM-based spatio-temporal model from structured, tensorized time-series features for object detection and action recognition. A deep compression is achieved by tensor decomposition and trained quantization of the time-series feature-based LSTM network. We have implemented DEEPEYE on an ARM-core-based IOT board with 31 FPS consuming only 2.4W power. Using the video datasets MOMENTS, UCF11 and HMDB51 as benchmarks, DEEPEYE achieves a 228.1x model compression with only 0.47% mAP reduction; as well as 15kx parameter reduction with up to 8.01% accuracy improvement over other competing approaches. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Nature Science Foundation of China (NSFC)[61604095]
; Science and Technology Innovation Committee Foundation of Shenzhen[JCYJ20180504165652917]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Hardware & Architecture
; Computer Science, Software Engineering
|
WOS记录号 | WOS:000582627100004
|
出版者 | |
EI入藏号 | 20203409061973
|
EI主题词 | Feature extraction
; Image compression
; Object recognition
; Tensors
; Long short-term memory
; Time series
; Video recording
; Deep neural networks
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Television Systems and Equipment:716.4
; Data Processing and Image Processing:723.2
; Algebra:921.1
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:13
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/125697 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China 3.Univ Hong Kong, Hong Kong, Peoples R China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yuan Cheng,Guangya Li,Ngai Wong,et al. DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices[J]. ACM Transactions on Embedded Computing Systems,2020,19(3).
|
APA |
Yuan Cheng,Guangya Li,Ngai Wong,Hai-Bao Chen,&Hao Yu.(2020).DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices.ACM Transactions on Embedded Computing Systems,19(3).
|
MLA |
Yuan Cheng,et al."DEEPEYE: A Deeply Tensor-Compressed Neural Network for Video Comprehension on Terminal Devices".ACM Transactions on Embedded Computing Systems 19.3(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论