题名 | Comparison of Single-Trace and Multiple-Trace Polarity Determination for Surface Microseismic Data Using Deep Learning |
作者 | |
通讯作者 | Zhang, Wei |
发表日期 | 2020-05
|
DOI | |
发表期刊 | |
ISSN | 0895-0695
|
EISSN | 1938-2057
|
卷号 | 91期号:3页码:1794-1803 |
摘要 | For surface microseismic monitoring, determination of the P-wave first-motion polarity is important because (1) it has been widely used to determine focal mechanisms and (2) the location accuracy of the diffraction-stack-based method is improved greatly using polarization correction. The convolutional neural network (CNN) is a form of deep learning algorithm that can be applied to predict the polarity of a seismogram automatically. However, the existing network designed for polarity detection utilizes only individual trace information. In this study, we design a multitrace-based CNN (MT-CNN) architecture using several neighbor traces combined as training samples, which could utilize the polarity information of neighbor sensors in the surface microseismic array. We use 17,227 field seismograms with labeled polarities to train two different neural networks that predict the polarities by a single trace or by multiple traces. The performance of the test set and field example of two CNN architectures shows that the MTCNN significantly produces fewer polarity prediction errors and leads to more accurate focal mechanism solutions for microseismic events. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[41574107][41704040][41904044]
; Science and Technology Project of the Education Department of Jiangxi Province of China[GJJ180399]
; Shenzhen Science and Technology Program[KQTD20170810111725321]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:000530707300044
|
出版者 | |
EI入藏号 | 20202008647924
|
EI主题词 | Neural networks
; Seismic waves
; Forecasting
; Microseismic monitoring
; Network architecture
; Deep learning
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Seismology:484
; Earthquake Measurements and Analysis:484.1
; Machine Learning:723.4.2
|
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138055 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.East China Univ Technol, Fundamental Sci Radioact Geol & Explorat Technol, Nanchang, Jiangxi, Peoples R China 2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China 3.Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China 4.Sinopec Geophys Res Inst, Nanjing, Peoples R China |
通讯作者单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Tian, Xiao,Zhang, Wei,Zhang, Xiong,et al. Comparison of Single-Trace and Multiple-Trace Polarity Determination for Surface Microseismic Data Using Deep Learning[J]. SEISMOLOGICAL RESEARCH LETTERS,2020,91(3):1794-1803.
|
APA |
Tian, Xiao.,Zhang, Wei.,Zhang, Xiong.,Zhang, Jie.,Zhang, Qingshan.,...&Guo, Quanshi.(2020).Comparison of Single-Trace and Multiple-Trace Polarity Determination for Surface Microseismic Data Using Deep Learning.SEISMOLOGICAL RESEARCH LETTERS,91(3),1794-1803.
|
MLA |
Tian, Xiao,et al."Comparison of Single-Trace and Multiple-Trace Polarity Determination for Surface Microseismic Data Using Deep Learning".SEISMOLOGICAL RESEARCH LETTERS 91.3(2020):1794-1803.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Tian et al. - 2020 -(4975KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论