题名 | Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence |
作者 | |
通讯作者 | Wang, Jianchun |
发表日期 | 2020-05-18
|
DOI | |
发表期刊 | |
ISSN | 2469-990X
|
卷号 | 5期号:5 |
摘要 | Spatial artificial neural network (ANN) models are developed for subgrid-scale (SGS) forces in the large eddy simulation (LES) of turbulence. The input features are based on the first-order derivatives of the filtered velocity field at different spatial locations. The correlation coefficients of SGS forces predicted by the spatial artifical neural network (SANN) models with reasonable spatial stencil geometry can be made larger than 0.99 in an a priori analysis, and the relative error of SGS forces can be made smaller than 15%, much smaller than that of the traditional gradient model. In a posteriori analysis, a detailed comparison is made on the results of LES using the SANN model, implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) at grid resolution of 64(3). It is shown that the SANN model performs better than the ILES, DSM, and DMM models in the prediction of the spectrum and other statistical properties of the velocity field, as well as the instantaneous flow structures. These results suggest that artificial neural network with consideration of spatial characteristics is a very effective tool for developing advanced SGS models in LES of turbulence. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China (NSFC)[91952104][11702127][91752201]
; Technology and Innovation Commission of Shenzhen Municipality[KQTD20180411143441009][JCYJ20170412151759222][ZDSYS201802081843517]
; Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000533504900004
|
出版者 | |
EI入藏号 | 20202908942429
|
EI主题词 | Velocity
; Neural network models
; Turbulence
|
EI分类号 | Fluid Flow:631
; Artificial Intelligence:723.4
; Mathematics:921
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:78
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138078 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Key Lab Complex Aerosp Flows, Ctr Complex Flows & Soft Matter Res, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China 2.Princeton Univ, Dept Math, Program Appl & Computat Math, Princeton, NJ 08544 USA |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie, Chenyue,Wang, Jianchun,E, Weinan. Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids,2020,5(5).
|
APA |
Xie, Chenyue,Wang, Jianchun,&E, Weinan.(2020).Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence.Physical Review Fluids,5(5).
|
MLA |
Xie, Chenyue,et al."Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence".Physical Review Fluids 5.5(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论