中文版 | English
题名

Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence

作者
通讯作者Wang, Jianchun
发表日期
2020-05-18
DOI
发表期刊
ISSN
2469-990X
卷号5期号:5
摘要
Spatial artificial neural network (ANN) models are developed for subgrid-scale (SGS) forces in the large eddy simulation (LES) of turbulence. The input features are based on the first-order derivatives of the filtered velocity field at different spatial locations. The correlation coefficients of SGS forces predicted by the spatial artifical neural network (SANN) models with reasonable spatial stencil geometry can be made larger than 0.99 in an a priori analysis, and the relative error of SGS forces can be made smaller than 15%, much smaller than that of the traditional gradient model. In a posteriori analysis, a detailed comparison is made on the results of LES using the SANN model, implicit large eddy simulation (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) at grid resolution of 64(3). It is shown that the SANN model performs better than the ILES, DSM, and DMM models in the prediction of the spectrum and other statistical properties of the velocity field, as well as the instantaneous flow structures. These results suggest that artificial neural network with consideration of spatial characteristics is a very effective tool for developing advanced SGS models in LES of turbulence.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[91952104][11702127][91752201] ; Technology and Innovation Commission of Shenzhen Municipality[KQTD20180411143441009][JCYJ20170412151759222][ZDSYS201802081843517] ; Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
WOS研究方向
Physics
WOS类目
Physics, Fluids & Plasmas
WOS记录号
WOS:000533504900004
出版者
EI入藏号
20202908942429
EI主题词
Velocity ; Neural network models ; Turbulence
EI分类号
Fluid Flow:631 ; Artificial Intelligence:723.4 ; Mathematics:921
来源库
Web of Science
引用统计
被引频次[WOS]:78
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138078
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Shenzhen Key Lab Complex Aerosp Flows, Ctr Complex Flows & Soft Matter Res, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
2.Princeton Univ, Dept Math, Program Appl & Computat Math, Princeton, NJ 08544 USA
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xie, Chenyue,Wang, Jianchun,E, Weinan. Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids,2020,5(5).
APA
Xie, Chenyue,Wang, Jianchun,&E, Weinan.(2020).Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence.Physical Review Fluids,5(5).
MLA
Xie, Chenyue,et al."Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence".Physical Review Fluids 5.5(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[E, Weinan]的文章
百度学术
百度学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[E, Weinan]的文章
必应学术
必应学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[E, Weinan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。