中文版 | English
题名

Simultaneous use of two normalization methods in decomposition-based multi-objective evolutionary algorithms

作者
通讯作者Ishibuchi,Hisao
发表日期
2020-07-01
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号92
摘要
In real-world applications, the order of magnitude in each objective varies, whereas most of fitness evaluation methods in many-objective solvers are scaling dependent. Objective space normalization has a large effect on the performance of each algorithm (i.e., on the practical applicability of each algorithm to real-world problems). In order to put equal emphasis on each objective, a normalization mechanism is always encouraged to be employed in the framework of the algorithm. Decomposition-based algorithms have become more and more popular in many-objective optimization. MOEA/D is a representative decomposition-based algorithm. Recently, some negative effects of normalization have been reported, which may deteriorate the practical applicability of MOEA/D to real-world problems. In this paper, to remedy the performance deterioration introduced by normalization in MOEA/D, we propose an idea of using two types of normalization methods in MOEA/D simultaneously (denoted as MOEA/D-2N). The proposed idea is compared with the standard MOEA/D and MOEA/D with normalization (denoted as MOEA/D-N) via two widely-used test suites (as well as their variants) and a real-world optimization problem. Experimental results show that MOEA/D-2N can effectively evolve a more diverse set of solutions and achieve robust and comparable performance compared with the standard MOEA/D and MOEA/D-N.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61876075] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000537255300009
出版者
EI入藏号
20201808587029
EI主题词
Evolutionary algorithms ; Deterioration
EI分类号
Optimization Techniques:921.5 ; Materials Science:951
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85083757133
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138109
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
He,Linjun,Shang,Ke,Ishibuchi,Hisao. Simultaneous use of two normalization methods in decomposition-based multi-objective evolutionary algorithms[J]. APPLIED SOFT COMPUTING,2020,92.
APA
He,Linjun,Shang,Ke,&Ishibuchi,Hisao.(2020).Simultaneous use of two normalization methods in decomposition-based multi-objective evolutionary algorithms.APPLIED SOFT COMPUTING,92.
MLA
He,Linjun,et al."Simultaneous use of two normalization methods in decomposition-based multi-objective evolutionary algorithms".APPLIED SOFT COMPUTING 92(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Linjun]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[He,Linjun]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[He,Linjun]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。