中文版 | English
题名

Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis

作者
通讯作者Lin,Peirong
发表日期
2020-04-16
DOI
发表期刊
ISSN
0094-8276
EISSN
1944-8007
卷号47期号:7
摘要
Recent progress in remote sensing has snapshotted unprecedented numbers of river planform geometry, providing opportunity to revisit the oversimplified channel shape parameterizations in global hydrologic models. This study leveraged two recent Landsat-derived global river width databases and created a reach-level width dataset to measure the validity of model parameterizations at ~1.6 million kilometers of rivers in length. By showing state-of-the-art parameterization schemes only capture 30–40% of the width variance globally, we developed a machine learning (ML) approach surveying 16 environmental covariates, which considerably improved the predictive power (R = 0.81 and 0.77 for two testing cases). Beyond the commonly discussed upstream basin conditions, ML revealed that local physiographic factors and human interference are also important covariates for width variability. Finally, we applied the ML model to estimate bankfull river width, creating a new reach-level dataset for use in global hydrodynamic modeling.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NASA on Algorithm Development for SWOT River Discharge Retrievals[NNX16AH84G] ; NASA SWOT Science Team Project[NNX16AH82G] ; NASA THP[NNH17ZDA001N]
WOS研究方向
Geology
WOS类目
Geosciences, Multidisciplinary
WOS记录号
WOS:000560367600036
出版者
EI入藏号
20201708509848
EI主题词
Big data ; Machine learning ; Stream flow ; Remote sensing ; Parameterization
EI分类号
Waterways:407.2 ; Fluid Flow, General:631.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Mathematics:921
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85083511918
来源库
Scopus
引用统计
被引频次[WOS]:38
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138228
专题工学院_环境科学与工程学院
作者单位
1.Department of Civil and Environmental Engineering,Princeton University,Princeton,United States
2.Department of Geography,Texas A&M University,College Station,United States
3.Byrd Polar and Climate Research Center,The Ohio State University,Columbus,United States
4.Now at School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
5.Institute of Industrial Science,The University of Tokyo,Tokyo,Japan
推荐引用方式
GB/T 7714
Lin,Peirong,Pan,Ming,Allen,George H.,et al. Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis[J]. GEOPHYSICAL RESEARCH LETTERS,2020,47(7).
APA
Lin,Peirong.,Pan,Ming.,Allen,George H..,de Frasson,Renato Prata.,Zeng,Zhenzhong.,...&Wood,Eric F..(2020).Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis.GEOPHYSICAL RESEARCH LETTERS,47(7).
MLA
Lin,Peirong,et al."Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis".GEOPHYSICAL RESEARCH LETTERS 47.7(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Peirong]的文章
[Pan,Ming]的文章
[Allen,George H.]的文章
百度学术
百度学术中相似的文章
[Lin,Peirong]的文章
[Pan,Ming]的文章
[Allen,George H.]的文章
必应学术
必应学术中相似的文章
[Lin,Peirong]的文章
[Pan,Ming]的文章
[Allen,George H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。