题名 | Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis |
作者 | |
通讯作者 | Lin,Peirong |
发表日期 | 2020-04-16
|
DOI | |
发表期刊 | |
ISSN | 0094-8276
|
EISSN | 1944-8007
|
卷号 | 47期号:7 |
摘要 | Recent progress in remote sensing has snapshotted unprecedented numbers of river planform geometry, providing opportunity to revisit the oversimplified channel shape parameterizations in global hydrologic models. This study leveraged two recent Landsat-derived global river width databases and created a reach-level width dataset to measure the validity of model parameterizations at ~1.6 million kilometers of rivers in length. By showing state-of-the-art parameterization schemes only capture 30–40% of the width variance globally, we developed a machine learning (ML) approach surveying 16 environmental covariates, which considerably improved the predictive power (R = 0.81 and 0.77 for two testing cases). Beyond the commonly discussed upstream basin conditions, ML revealed that local physiographic factors and human interference are also important covariates for width variability. Finally, we applied the ML model to estimate bankfull river width, creating a new reach-level dataset for use in global hydrodynamic modeling. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | NASA on Algorithm Development for SWOT River Discharge Retrievals[NNX16AH84G]
; NASA SWOT Science Team Project[NNX16AH82G]
; NASA THP[NNH17ZDA001N]
|
WOS研究方向 | Geology
|
WOS类目 | Geosciences, Multidisciplinary
|
WOS记录号 | WOS:000560367600036
|
出版者 | |
EI入藏号 | 20201708509848
|
EI主题词 | Big data
; Machine learning
; Stream flow
; Remote sensing
; Parameterization
|
EI分类号 | Waterways:407.2
; Fluid Flow, General:631.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Mathematics:921
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85083511918
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:38
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/138228 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Department of Civil and Environmental Engineering,Princeton University,Princeton,United States 2.Department of Geography,Texas A&M University,College Station,United States 3.Byrd Polar and Climate Research Center,The Ohio State University,Columbus,United States 4.Now at School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China 5.Institute of Industrial Science,The University of Tokyo,Tokyo,Japan |
推荐引用方式 GB/T 7714 |
Lin,Peirong,Pan,Ming,Allen,George H.,et al. Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis[J]. GEOPHYSICAL RESEARCH LETTERS,2020,47(7).
|
APA |
Lin,Peirong.,Pan,Ming.,Allen,George H..,de Frasson,Renato Prata.,Zeng,Zhenzhong.,...&Wood,Eric F..(2020).Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis.GEOPHYSICAL RESEARCH LETTERS,47(7).
|
MLA |
Lin,Peirong,et al."Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis".GEOPHYSICAL RESEARCH LETTERS 47.7(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论