中文版 | English
题名

Accelerating high-resolution seismic imaging by using deep learning

作者
通讯作者Zhang,Jianfeng
发表日期
2020-04-01
DOI
发表期刊
EISSN
2076-3417
卷号10期号:7
摘要

The emerging applications of deep learning in solving geophysical problems have attracted increasing attention. In particular, it is of significance to enhance the computational efficiency of the computationally intensive geophysical algorithms. In this paper, we accelerate deabsorption prestack time migration (QPSTM), which can yield higher-resolution seismic imaging by compensating absorption and correcting dispersion through deep learning. This is implemented by training a neural network with pairs of small-sized patches of the stacked migrated results obtained by conventional PSTM and deabsorption QPSTM and then yielding the high-resolution imaging volume by prediction with the migrated results of conventional PSTM. We use an encoder-decoder network to highlight the features related to high-resolution migrated results in a high-order dimension space. The training data set of small-sized patches not only reduces the required high-resolution migrated result (for instance, only several inline is required) but leads to a fast convergence in training. The proposed deep-learning approach accelerates the high-resolution imaging by more than 100 times. Field data is used to demonstrate the effectiveness of the proposed method.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Oil and Gas Major Project of China[2017ZX05008-007] ; Open Research Found from Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences[KLOR2018-2] ; National Natural Science Foundation of China[41804129]
WOS研究方向
Chemistry ; Engineering ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号
WOS:000533356200301
出版者
Scopus记录号
2-s2.0-85083445852
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138240
专题理学院_地球与空间科学系
作者单位
1.School of Geophysics and Information Technology,China University of Geosciences,Beijing,100083,China
2.Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing,100029,China
3.University of Chinese Academy of Sciences,Beijing,100049,China
4.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Liu,Wei,Cheng,Qian,Liu,Linong,et al. Accelerating high-resolution seismic imaging by using deep learning[J]. Applied Sciences (Switzerland),2020,10(7).
APA
Liu,Wei,Cheng,Qian,Liu,Linong,Wang,Yun,&Zhang,Jianfeng.(2020).Accelerating high-resolution seismic imaging by using deep learning.Applied Sciences (Switzerland),10(7).
MLA
Liu,Wei,et al."Accelerating high-resolution seismic imaging by using deep learning".Applied Sciences (Switzerland) 10.7(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Wei]的文章
[Cheng,Qian]的文章
[Liu,Linong]的文章
百度学术
百度学术中相似的文章
[Liu,Wei]的文章
[Cheng,Qian]的文章
[Liu,Linong]的文章
必应学术
必应学术中相似的文章
[Liu,Wei]的文章
[Cheng,Qian]的文章
[Liu,Linong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。