中文版 | English
题名

Identifying cell type specific TF combinatorial regulation via a two-stage statistical method

作者
通讯作者Wang,Yong
DOI
发表日期
2020-02-01
ISSN
2375-933X
会议录名称
页码
350-357
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Transcription factors (TFs) are sequence-specific DNA-binding proteins controlling the genetic information's transcription rate from DNA to messenger RNA. Many TFs work together as a complex to perform their function and change cell morphology or activities for cell fate determination and cellular differentiation. In this paper, we propose a Two-Stage Statistical Method (TSSM) to study the interactions among TFs in a tissue specific way. We find that TF genes tend to be specifically expressed across cell types and have significantly different expression patterns compared to non-TF genes. This motivates us to infer the TF interactions by two stages. First stage we check two TFs' global correlation across all cell types by counting the number of overlapped cell types and assessing fold change and hyper-geometric distribution test p-value. Second stage the local correlation is assessed by the Pearson Correlation Coefficient across those highly expressed cell types. TSSM combines these two stages via Fisher's method and identifies the TF pairs interacting in those highly expressed cell types. This allows us to probe the dynamics of TFs' combinatorial regulation in multiple tissues or cell types. We compile a large collection of RNA-seq data across 231 cell types in mouse. The predicted 3,876 TF interactions are significantly overlap with the experimental TF combinations and the tissue specific regulatory networks in human. In addition, TSSM outperforms the existing correlation methods using experimental data as gold standard. Taken together, TSSM serves as a useful tool to probe the TFs' combinatorial regulation mechanism across multiple tissue or cell types.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Strategic Priority Research Program of Chinese Academy of Science[XDB13000000]
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:000569987500060
EI入藏号
20202008643312
EI主题词
Cytology ; Tissue ; Correlation methods ; Probability distributions ; RNA ; Transcription
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Biology:461.9 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85084369060
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138259
专题南方科技大学
生命科学学院_生物系
作者单位
1.Academy of Mathematical Sciences,Beihang University,Beijing,China
2.South University of Science and Technology of China,Shenzhen,China
3.CEMS,NCMIS,MDIS,Academy of Mathematics and Systems Science Chinese Academy of Sciences,Beijing,China
推荐引用方式
GB/T 7714
Liu,Kairong,Hutchins,Andrew,Wang,Yong. Identifying cell type specific TF combinatorial regulation via a two-stage statistical method[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:350-357.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Kairong]的文章
[Hutchins,Andrew]的文章
[Wang,Yong]的文章
百度学术
百度学术中相似的文章
[Liu,Kairong]的文章
[Hutchins,Andrew]的文章
[Wang,Yong]的文章
必应学术
必应学术中相似的文章
[Liu,Kairong]的文章
[Hutchins,Andrew]的文章
[Wang,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。