中文版 | English
题名

Rational spectral methods for pdes involving fractional laplacian in unbounded domains

作者
发表日期
2020
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号42期号:2页码:A585-A611
摘要

Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decaying slowly and subject to certain power law. Their numerical solutions are underexplored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identities related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by precomputing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach.;Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decaying slowly and subject to certain power law. Their numerical solutions are underexplored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identities related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by precomputing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NSF of China[11822111][11688101][11571351][11731006]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000551251700015
出版者
EI入藏号
20202008650187
EI主题词
Fourier transforms ; Laplace transforms ; Spectroscopy ; Numerical methods ; Galerkin methods ; Sobolev spaces
EI分类号
Mathematics:921 ; Mathematical Transformations:921.3 ; Numerical Methods:921.6
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85084466236
来源库
Scopus
引用统计
被引频次[WOS]:46
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/138308
专题深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Division of Science and Technology,BNU-HKBU United International College,Zhuhai, Guangdong,China
2.SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,China
3.Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore,637371,Singapore
4.Department of Mathematics,Hong Kong Baptist University,Hong Kong
5.LSEC and NCMIS,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing,China
第一作者单位深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Tang,Tao,Wang,Li Lian,Yuan,Huifang,et al. Rational spectral methods for pdes involving fractional laplacian in unbounded domains[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2020,42(2):A585-A611.
APA
Tang,Tao,Wang,Li Lian,Yuan,Huifang,&Zhou,Tao.(2020).Rational spectral methods for pdes involving fractional laplacian in unbounded domains.SIAM JOURNAL ON SCIENTIFIC COMPUTING,42(2),A585-A611.
MLA
Tang,Tao,et al."Rational spectral methods for pdes involving fractional laplacian in unbounded domains".SIAM JOURNAL ON SCIENTIFIC COMPUTING 42.2(2020):A585-A611.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Tao]的文章
[Wang,Li Lian]的文章
[Yuan,Huifang]的文章
百度学术
百度学术中相似的文章
[Tang,Tao]的文章
[Wang,Li Lian]的文章
[Yuan,Huifang]的文章
必应学术
必应学术中相似的文章
[Tang,Tao]的文章
[Wang,Li Lian]的文章
[Yuan,Huifang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。